/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Prove excluded middle using: excluded middle follows from Hilbert's choice operator, function extensionality, and Prop extensionality -/ import logic.axioms.hilbert logic.eq open eq.ops section parameter p : Prop private definition U (x : Prop) : Prop := x = true ∨ p private definition V (x : Prop) : Prop := x = false ∨ p private noncomputable definition u := epsilon U private noncomputable definition v := epsilon V private lemma u_def : U u := epsilon_spec (exists.intro true (or.inl rfl)) private lemma v_def : V v := epsilon_spec (exists.intro false (or.inl rfl)) private lemma not_uv_or_p : ¬(u = v) ∨ p := or.elim u_def (assume Hut : u = true, or.elim v_def (assume Hvf : v = false, have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false, or.inl Hne) (assume Hp : p, or.inr Hp)) (assume Hp : p, or.inr Hp) private lemma p_implies_uv : p → u = v := assume Hp : p, have Hpred : U = V, from funext (take x : Prop, have Hl : (x = true ∨ p) → (x = false ∨ p), from assume A, or.inr Hp, have Hr : (x = false ∨ p) → (x = true ∨ p), from assume A, or.inr Hp, show (x = true ∨ p) = (x = false ∨ p), from propext (iff.intro Hl Hr)), have H' : epsilon U = epsilon V, from Hpred ▸ rfl, show u = v, from H' theorem em : p ∨ ¬p := have H : ¬(u = v) → ¬p, from mt p_implies_uv, or.elim not_uv_or_p (assume Hne : ¬(u = v), or.inr (H Hne)) (assume Hp : p, or.inl Hp) end