/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.div Authors: Jeremy Avigad, Leonardo de Moura Definitions of div, mod, and gcd on the natural numbers. -/ import data.nat.sub data.nat.comm_semiring logic import algebra.relation import tools.fake_simplifier open eq.ops well_founded decidable fake_simplifier prod open relation relation.iff_ops namespace nat -- Auxiliary lemma used to justify div private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos) private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero definition divide (x y : nat) := fix div.F x y theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 := congr_fun (fix_eq div.F x) y notation a div b := divide a b theorem div_zero (a : ℕ) : a div 0 = 0 := divide_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem div_less {a b : ℕ} (h : a < b) : a div b = 0 := divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_lt h)) theorem zero_div (b : ℕ) : 0 div b = 0 := divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem div_rec {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) := divide_def a b ⬝ if_pos (and.intro h₁ h₂) theorem div_add_self_right {x z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) := calc (x + z) div z = if 0 < z ∧ z ≤ x + z then divide (x + z - z) z + 1 else 0 : !divide_def ... = divide (x + z - z) z + 1 : if_pos (and.intro H (le_add_left z x)) ... = succ (x div z) : sub_add_left theorem div_add_mul_self_right {x y z : ℕ} (H : z > 0) : (x + y * z) div z = x div z + y := induction_on y (calc (x + zero * z) div z = (x + zero) div z : zero_mul ... = x div z : add_zero ... = x div z + zero : add_zero) (take y, assume IH : (x + y * z) div z = x div z + y, calc (x + succ y * z) div z = (x + y * z + z) div z : by simp ... = succ ((x + y * z) div z) : div_add_self_right H ... = x div z + succ y : by simp) private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x definition modulo (x y : nat) := fix mod.F x y notation a mod b := modulo a b theorem modulo_def (x y : nat) : modulo x y = if 0 < y ∧ y ≤ x then modulo (x - y) y else x := congr_fun (fix_eq mod.F x) y theorem mod_zero (a : ℕ) : a mod 0 = a := modulo_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem mod_less {a b : ℕ} (h : a < b) : a mod b = a := modulo_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_lt h)) theorem zero_mod (b : ℕ) : 0 mod b = 0 := modulo_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem mod_rec {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a mod b = (a - b) mod b := modulo_def a b ⬝ if_pos (and.intro h₁ h₂) theorem mod_add_self_right {x z : ℕ} (H : z > 0) : (x + z) mod z = x mod z := calc (x + z) mod z = if 0 < z ∧ z ≤ x + z then (x + z - z) mod z else _ : modulo_def ... = (x + z - z) mod z : if_pos (and.intro H (le_add_left z x)) ... = x mod z : sub_add_left theorem mod_add_mul_self_right {x y z : ℕ} (H : z > 0) : (x + y * z) mod z = x mod z := induction_on y (calc (x + zero * z) mod z = (x + zero) mod z : zero_mul ... = x mod z : add_zero) (take y, assume IH : (x + y * z) mod z = x mod z, calc (x + succ y * z) mod z = (x + (y * z + z)) mod z : succ_mul ... = (x + y * z + z) mod z : add.assoc ... = (x + y * z) mod z : mod_add_self_right H ... = x mod z : IH) theorem mod_mul_self_right {m n : ℕ} : (m * n) mod n = 0 := by_cases_zero_pos n (by simp) (take n, assume npos : n > 0, (by simp) ▸ (@mod_add_mul_self_right 0 m _ npos)) -- add_rewrite mod_mul_self_right theorem mod_mul_self_left {m n : ℕ} : (m * n) mod m = 0 := !mul.comm ▸ mod_mul_self_right -- add_rewrite mod_mul_self_left -- ### properties of div and mod together theorem mod_lt {x y : ℕ} (H : y > 0) : x mod y < y := case_strong_induction_on x (show 0 mod y < y, from !zero_mod⁻¹ ▸ H) (take x, assume IH : ∀x', x' ≤ x → x' mod y < y, show succ x mod y < y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have H2 : succ x mod y = succ x, from mod_less H1, show succ x mod y < y, from H2⁻¹ ▸ H1) (assume H1 : ¬ succ x < y, have H2 : y ≤ succ x, from le_of_not_lt H1, have H3 : succ x mod y = (succ x - y) mod y, from mod_rec H H2, have H4 : succ x - y < succ x, from sub_lt !succ_pos H, have H5 : succ x - y ≤ x, from le_of_lt_succ H4, show succ x mod y < y, from H3⁻¹ ▸ IH _ H5)) theorem div_mod_eq {x y : ℕ} : x = x div y * y + x mod y := by_cases_zero_pos y (show x = x div 0 * 0 + x mod 0, from (calc x div 0 * 0 + x mod 0 = 0 + x mod 0 : mul_zero ... = x mod 0 : zero_add ... = x : mod_zero)⁻¹) (take y, assume H : y > 0, show x = x div y * y + x mod y, from case_strong_induction_on x (show 0 = (0 div y) * y + 0 mod y, by simp) (take x, assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y, show succ x = succ x div y * y + succ x mod y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have H2 : succ x div y = 0, from div_less H1, have H3 : succ x mod y = succ x, from mod_less H1, by simp) (assume H1 : ¬ succ x < y, have H2 : y ≤ succ x, from le_of_not_lt H1, have H3 : succ x div y = succ ((succ x - y) div y), from div_rec H H2, have H4 : succ x mod y = (succ x - y) mod y, from mod_rec H H2, have H5 : succ x - y < succ x, from sub_lt !succ_pos H, have H6 : succ x - y ≤ x, from le_of_lt_succ H5, (calc succ x div y * y + succ x mod y = succ ((succ x - y) div y) * y + succ x mod y : H3 ... = ((succ x - y) div y) * y + y + succ x mod y : succ_mul ... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4 ... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm ... = succ x - y + y : {!(IH _ H6)⁻¹} ... = succ x : add_sub_ge_left H2)⁻¹))) theorem mod_le {x y : ℕ} : x mod y ≤ x := div_mod_eq⁻¹ ▸ !le_add_left --- a good example where simplifying using the context causes problems theorem remainder_unique {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 := calc r1 = r1 mod y : by simp ... = (r1 + q1 * y) mod y : (mod_add_mul_self_right H)⁻¹ ... = (q1 * y + r1) mod y : add.comm ... = (r2 + q2 * y) mod y : by simp ... = r2 mod y : mod_add_mul_self_right H ... = r2 : by simp theorem quotient_unique {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 := have H4 : q1 * y + r2 = q2 * y + r2, from (remainder_unique H H1 H2 H3) ▸ H3, have H5 : q1 * y = q2 * y, from add.cancel_right H4, have H6 : y > 0, from lt_of_le_of_lt !zero_le H1, show q1 = q2, from eq_of_mul_eq_mul_right H6 H5 theorem div_mul_mul {z x y : ℕ} (zpos : z > 0) : (z * x) div (z * y) = x div y := by_cases -- (y = 0) (assume H : y = 0, by simp) (assume H : y ≠ 0, have ypos : y > 0, from pos_of_ne_zero H, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (mod_lt ypos) zpos, quotient_unique zypos H1 H2 (calc ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : div_mod_eq ... = z * (x div y * y + x mod y) : div_mod_eq ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)) --- something wrong with the term order --- ... = (x div y) * (z * y) + z * (x mod y) : by simp)) theorem mod_mul_mul {z x y : ℕ} (zpos : z > 0) : (z * x) mod (z * y) = z * (x mod y) := by_cases -- (y = 0) (assume H : y = 0, by simp) (assume H : y ≠ 0, have ypos : y > 0, from pos_of_ne_zero H, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (mod_lt ypos) zpos, remainder_unique zypos H1 H2 (calc ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : div_mod_eq ... = z * (x div y * y + x mod y) : div_mod_eq ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)) theorem mod_one (x : ℕ) : x mod 1 = 0 := have H1 : x mod 1 < 1, from mod_lt !succ_pos, eq_zero_of_le_zero (le_of_lt_succ H1) -- add_rewrite mod_one theorem mod_self (n : ℕ) : n mod n = 0 := cases_on n (by simp) (take n, have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1), from mod_mul_mul !succ_pos, (by simp) ▸ H) -- add_rewrite mod_self theorem div_one (n : ℕ) : n div 1 = n := have H : n div 1 * 1 + n mod 1 = n, from div_mod_eq⁻¹, (by simp) ▸ H -- add_rewrite div_one theorem pos_div_self {n : ℕ} (H : n > 0) : n div n = 1 := have H1 : (n * 1) div (n * 1) = 1 div 1, from div_mul_mul H, (by simp) ▸ H1 -- add_rewrite pos_div_self -- Divides -- ------- -- definition dvd (x y : ℕ) : Prop := y mod x = 0 -- infix `|` := dvd -- theorem dvd_iff_mod_eq_zero {x y : ℕ} : x | y ↔ y mod x = 0 := -- iff.of_eq rfl theorem mod_eq_zero_imp_div_mul_eq {x y : ℕ} (H : x mod y = 0) : x div y * y = x := (calc x = x div y * y + x mod y : div_mod_eq ... = x div y * y + 0 : H ... = x div y * y : !add_zero)⁻¹ -- add_rewrite dvd_imp_div_mul_eq theorem mul_eq_imp_mod_eq_zero {z x y : ℕ} (H : z * y = x) : x mod y = 0 := have H1 : z * y = x mod y + x div y * y, from H ⬝ div_mod_eq ⬝ !add.comm, have H2 : (z - x div y) * y = x mod y, from calc (z - x div y) * y = z * y - x div y * y : mul_sub_distr_right ... = x mod y + x div y * y - x div y * y : H1 ... = x mod y : sub_add_left, show x mod y = 0, from by_cases (assume yz : y = 0, have xz : x = 0, from calc x = z * y : H ... = z * 0 : yz ... = 0 : mul_zero, calc x mod y = x mod 0 : yz ... = x : mod_zero ... = 0 : xz) (assume ynz : y ≠ 0, have ypos : y > 0, from pos_of_ne_zero ynz, have H3 : (z - x div y) * y < y, from H2⁻¹ ▸ mod_lt ypos, have H4 : (z - x div y) * y < 1 * y, from !one_mul⁻¹ ▸ H3, have H5 : z - x div y < 1, from lt_of_mul_lt_mul_right H4, have H6 : z - x div y = 0, from eq_zero_of_le_zero (le_of_lt_succ H5), calc x mod y = (z - x div y) * y : H2 ... = 0 * y : H6 ... = 0 : zero_mul) theorem dvd_of_mod_eq_zero {x y : ℕ} (H : y mod x = 0) : x | y := dvd.intro (!mul.comm ▸ mod_eq_zero_imp_div_mul_eq H) theorem mod_eq_zero_of_dvd {x y : ℕ} (H : x | y) : y mod x = 0 := dvd.elim H ( take z, assume H1 : x * z = y, mul_eq_imp_mod_eq_zero (!mul.comm ▸ H1)) theorem dvd_iff_mod_eq_zero (x y : ℕ) : x | y ↔ y mod x = 0 := iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero definition dvd.decidable_rel [instance] : decidable_rel dvd := take m n, decidable_of_decidable_of_iff _ (!dvd_iff_mod_eq_zero⁻¹) theorem dvd_imp_div_mul_eq {x y : ℕ} (H : y | x) : x div y * y = x := mod_eq_zero_imp_div_mul_eq (mod_eq_zero_of_dvd H) theorem dvd_of_dvd_add_left {m n1 n2 : ℕ} : m | (n1 + n2) → m | n1 → m | n2 := by_cases_zero_pos m (assume (H1 : 0 | n1 + n2) (H2 : 0 | n1), have H3 : n1 + n2 = 0, from eq_zero_of_zero_dvd H1, have H4 : n1 = 0, from eq_zero_of_zero_dvd H2, have H5 : n2 = 0, from calc n2 = 0 + n2 : zero_add ... = n1 + n2 : H4 ... = 0 : H3, show 0 | n2, from H5 ▸ dvd.refl n2) (take m, assume mpos : m > 0, assume H1 : m | (n1 + n2), assume H2 : m | n1, have H3 : n1 + n2 = n1 + n2 div m * m, from calc n1 + n2 = (n1 + n2) div m * m : dvd_imp_div_mul_eq H1 ... = (n1 div m * m + n2) div m * m : dvd_imp_div_mul_eq H2 ... = (n2 + n1 div m * m) div m * m : add.comm ... = (n2 div m + n1 div m) * m : div_add_mul_self_right mpos ... = n2 div m * m + n1 div m * m : mul.right_distrib ... = n1 div m * m + n2 div m * m : add.comm ... = n1 + n2 div m * m : dvd_imp_div_mul_eq H2, have H4 : n2 = n2 div m * m, from add.cancel_left H3, have H5 : m * (n2 div m) = n2, from !mul.comm ▸ H4⁻¹, dvd.intro H5) theorem dvd_add_cancel_right {m n1 n2 : ℕ} (H : m | (n1 + n2)) : m | n2 → m | n1 := dvd_of_dvd_add_left (!add.comm ▸ H) theorem dvd_sub {m n1 n2 : ℕ} (H1 : m | n1) (H2 : m | n2) : m | (n1 - n2) := by_cases (assume H3 : n1 ≥ n2, have H4 : n1 = n1 - n2 + n2, from (add_sub_ge_left H3)⁻¹, show m | n1 - n2, from dvd_add_cancel_right (H4 ▸ H1) H2) (assume H3 : ¬ (n1 ≥ n2), have H4 : n1 - n2 = 0, from le_imp_sub_eq_zero (le_of_lt (lt_of_not_le H3)), show m | n1 - n2, from H4⁻¹ ▸ dvd_zero _) -- Gcd and lcm -- ----------- private definition pair_nat.lt : nat × nat → nat × nat → Prop := measure pr₂ private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20 -- Remark: we use intro_k to be able to execute gcd efficiently in the kernel instance pair_nat.lt.wf -- Remark: instance will not be saved in .olean infixl [local] `≺`:50 := pair_nat.lt private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) := mod_lt (succ_pos y₁) definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat := prod.cases_on p₁ (λx y, cases_on y (λ f, x) (λ y₁ (f : Πp₂, p₂ ≺ (x, succ y₁) → nat), f (succ y₁, x mod succ y₁) !gcd.lt.dec)) definition gcd (x y : nat) := fix gcd.F (pair x y) theorem gcd_zero (x : nat) : gcd x 0 = x := well_founded.fix_eq gcd.F (x, 0) theorem gcd_succ (x y : nat) : gcd x (succ y) = gcd (succ y) (x mod succ y) := well_founded.fix_eq gcd.F (x, succ y) theorem gcd_one (n : ℕ) : gcd n 1 = 1 := calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ n zero ... = gcd 1 0 : mod_one ... = 1 : gcd_zero theorem gcd_def (x y : ℕ) : gcd x y = if y = 0 then x else gcd y (x mod y) := cases_on y (calc gcd x 0 = x : gcd_zero x ... = if 0 = 0 then x else gcd zero (x mod zero) : (if_pos rfl)⁻¹) (λy₁, calc gcd x (succ y₁) = gcd (succ y₁) (x mod succ y₁) : gcd_succ x y₁ ... = if succ y₁ = 0 then x else gcd (succ y₁) (x mod succ y₁) : (if_neg (succ_ne_zero y₁))⁻¹) theorem gcd_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m mod n) := gcd_def m n ⬝ if_neg (ne_zero_of_pos H) theorem gcd_self (n : ℕ) : gcd n n = n := cases_on n rfl (λn₁, calc gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ (succ n₁) n₁ ... = gcd (succ n₁) 0 : mod_self (succ n₁) ... = succ n₁ : gcd_zero) theorem gcd_zero_left (n : nat) : gcd 0 n = n := cases_on n rfl (λ n₁, calc gcd 0 (succ n₁) = gcd (succ n₁) (0 mod succ n₁) : gcd_succ ... = gcd (succ n₁) 0 : zero_mod ... = (succ n₁) : gcd_zero) theorem gcd_induct {P : ℕ → ℕ → Prop} (m n : ℕ) (H0 : ∀m, P m 0) (H1 : ∀m n, 0 < n → P n (m mod n) → P m n) : P m n := let Q : nat × nat → Prop := λ p : nat × nat, P (pr₁ p) (pr₂ p) in have aux : Q (m, n), from well_founded.induction (m, n) (λp, prod.cases_on p (λm n, cases_on n (λ ih, show P (pr₁ (m, 0)) (pr₂ (m, 0)), from H0 m) (λ n₁ (ih : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)), have hlt₁ : 0 < succ n₁, from succ_pos n₁, have hlt₂ : (succ n₁, m mod succ n₁) ≺ (m, succ n₁), from gcd.lt.dec _ _, have hp : P (succ n₁) (m mod succ n₁), from ih _ hlt₂, show P m (succ n₁), from H1 m (succ n₁) hlt₁ hp))), aux theorem gcd_dvd (m n : ℕ) : (gcd m n | m) ∧ (gcd m n | n) := gcd_induct m n (take m, show (gcd m 0 | m) ∧ (gcd m 0 | 0), by simp) (take m n, assume npos : 0 < n, assume IH : (gcd n (m mod n) | n) ∧ (gcd n (m mod n) | (m mod n)), have H : gcd n (m mod n) | (m div n * n + m mod n), from dvd_add (dvd.trans (and.elim_left IH) !dvd_mul_left) (and.elim_right IH), have H1 : gcd n (m mod n) | m, from div_mod_eq⁻¹ ▸ H, have gcd_eq : gcd n (m mod n) = gcd m n, from (gcd_pos _ npos)⁻¹, show (gcd m n | m) ∧ (gcd m n | n), from gcd_eq ▸ (and.intro H1 (and.elim_left IH))) theorem gcd_dvd_left (m n : ℕ) : (gcd m n | m) := and.elim_left !gcd_dvd theorem gcd_dvd_right (m n : ℕ) : (gcd m n | n) := and.elim_right !gcd_dvd theorem gcd_greatest {m n k : ℕ} : k | m → k | n → k | (gcd m n) := gcd_induct m n (take m, assume (h₁ : k | m) (h₂ : k | 0), show k | gcd m 0, from !gcd_zero⁻¹ ▸ h₁) (take m n, assume npos : n > 0, assume IH : k | n → k | (m mod n) → k | gcd n (m mod n), assume H1 : k | m, assume H2 : k | n, have H3 : k | m div n * n + m mod n, from div_mod_eq ▸ H1, have H4 : k | m mod n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 (by simp)), have gcd_eq : gcd n (m mod n) = gcd m n, from (gcd_pos _ npos)⁻¹, show k | gcd m n, from gcd_eq ▸ IH H2 H4) end nat