/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import data.nat open nat definition fib : nat → nat | 0 := 1 | 1 := 1 | (n+2) := fib (n+1) + fib n private definition fib_fast_aux : nat → (nat × nat) | 0 := (0, 1) | 1 := (1, 1) | (n+2) := match fib_fast_aux (n+1) with | (fn, fn1) := (fn1, fn1 + fn) end open prod.ops -- Get .1 .2 notation for pairs definition fib_fast (n : nat) := (fib_fast_aux n).2 -- We now prove that fib_fast and fib are equal lemma fib_fast_aux_lemma : ∀ n, (fib_fast_aux (succ n)).1 = (fib_fast_aux n).2 | 0 := rfl | 1 := rfl | (succ (succ n)) := begin unfold fib_fast_aux at {1}, rewrite [-prod.eta (fib_fast_aux _)], end theorem fib_eq_fib_fast : ∀ n, fib_fast n = fib n | 0 := rfl | 1 := rfl | (succ (succ n)) := begin have feq : fib_fast n = fib n, from fib_eq_fib_fast n, have f1eq : fib_fast (succ n) = fib (succ n), from fib_eq_fib_fast (succ n), unfold [fib, fib_fast, fib_fast_aux], rewrite [-prod.eta (fib_fast_aux _)], fold fib_fast (succ n), rewrite f1eq, rewrite fib_fast_aux_lemma, fold fib_fast n, rewrite feq, end