/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Finite products on a monoid, and finite sums on an additive monoid. There are three versions: Prodl, Suml : products and sums over lists Prod, Sum (in namespace finset) : products and sums over finsets Prod, Sum (in namespace set) : products and sums over finite sets We also define internal functions Prodl_semigroup and Prod_semigroup that can be used to define operations over commutative semigroups where there is no unit. We put them into their own namespaces so that they won't be very prominent. They can be used to define Min and Max in the number systems, or Inter for finsets. We have to be careful with dependencies. This theory imports files from finset and list, which import basic files from nat. -/ import .group .group_power data.list.basic data.list.perm data.finset.basic data.set.finite open function binary quot subtype list variables {A B : Type} variable [deceqA : decidable_eq A] definition mulf [sgB : semigroup B] (f : A → B) : B → A → B := λ b a, b * f a /- -- list versions. -/ /- Prodl_semigroup: product indexed by a list, with a default for the empty list -/ namespace Prodl_semigroup variable [semigroup B] definition Prodl_semigroup (dflt : B) : ∀ (l : list A) (f : A → B), B | [] f := dflt | (a :: l) f := list.foldl (mulf f) (f a) l theorem Prodl_semigroup_nil (dflt : B) (f : A → B) : Prodl_semigroup dflt nil f = dflt := rfl theorem Prodl_semigroup_cons (dflt : B) (f : A → B) (a : A) (l : list A) : Prodl_semigroup dflt (a::l) f = list.foldl (mulf f) (f a) l := rfl theorem Prodl_semigroup_singleton (dflt : B) (f : A → B) (a : A) : Prodl_semigroup dflt [a] f = f a := rfl theorem Prodl_semigroup_cons_cons (dflt : B) (f : A → B) (a₁ a₂ : A) (l : list A) : Prodl_semigroup dflt (a₁::a₂::l) f = f a₁ * Prodl_semigroup dflt (a₂::l) f := begin rewrite [↑Prodl_semigroup, foldl_cons, ↑mulf at {2}], generalize (f a₂), induction l with a l ih, {intro x, exact rfl}, intro x, rewrite [*foldl_cons, ↑mulf at {2,3}, mul.assoc, ih] end theorem Prodl_semigroup_binary (dflt : B) (f : A → B) (a₁ a₂ : A) : Prodl_semigroup dflt [a₁, a₂] f = f a₁ * f a₂ := rfl section deceqA include deceqA theorem Prodl_semigroup_insert_of_mem (dflt : B) (f : A → B) {a : A} {l : list A} : a ∈ l → Prodl_semigroup dflt (insert a l) f = Prodl_semigroup dflt l f := assume ainl, by rewrite [insert_eq_of_mem ainl] theorem Prodl_semigroup_insert_insert_of_not_mem (dflt : B) (f : A → B) {a₁ a₂ : A} {l : list A} (h₁ : a₂ ∉ l) (h₂ : a₁ ∉ insert a₂ l) : Prodl_semigroup dflt (insert a₁ (insert a₂ l)) f = f a₁ * Prodl_semigroup dflt (insert a₂ l) f := by rewrite [insert_eq_of_not_mem h₂, insert_eq_of_not_mem h₁, Prodl_semigroup_cons_cons] end deceqA end Prodl_semigroup /- Prodl: product indexed by a list -/ section monoid variable [monoid B] definition Prodl (l : list A) (f : A → B) : B := list.foldl (mulf f) 1 l -- ∏ x ← l, f x notation `∏` binders `←` l `, ` r:(scoped f, Prodl l f) := r private theorem foldl_const (f : A → B) : ∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l | [] b := by rewrite [*foldl_nil, mul_one] | (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf, one_mul, mul.assoc] theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f := by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul] theorem Prodl_append : ∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f | [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul] | (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc] section deceqA include deceqA theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l → Prodl (insert a l) f = Prodl l f := assume ainl, by rewrite [insert_eq_of_mem ainl] theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} : a ∉ l → Prodl (insert a l) f = f a * Prodl l f := assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons] theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := by rewrite [union_eq_append d, Prodl_append] end deceqA theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B) | [] := rfl | (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one] lemma Prodl_singleton (a : A) (f : A → B) : Prodl [a] f = f a := !one_mul lemma Prodl_map {f : A → B} : ∀ {l : list A}, Prodl l f = Prodl (map f l) id | nil := by rewrite [map_nil] | (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end open nat lemma Prodl_eq_pow_of_const {f : A → B} : ∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l | nil := take b, assume Pconst, by rewrite [length_nil, {b^0}pow_zero] | (a::l) := take b, assume Pconst, have Pconstl : ∀ a', a' ∈ l → f a' = b, from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in), by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons, add_one, pow_succ b] end monoid section comm_monoid variable [comm_monoid B] theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := list.induction_on l (by rewrite [*Prodl_nil, mul_one]) (take a l, assume IH, by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)]) end comm_monoid /- Suml: sum indexed by a list -/ section add_monoid variable [add_monoid B] local attribute add_monoid.to_monoid [trans_instance] definition Suml (l : list A) (f : A → B) : B := Prodl l f -- ∑ x ← l, f x notation `∑` binders `←` l `, ` r:(scoped f, Suml l f) := r theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f := Prodl_cons f a l theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f := Prodl_append l₁ l₂ f section deceqA include deceqA theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) : Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) : Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d end deceqA theorem Suml_zero (l : list A) : Suml l (λ x, 0) = (0:B) := Prodl_one l theorem Suml_singleton (a : A) (f : A → B) : Suml [a] f = f a := Prodl_singleton a f end add_monoid section add_comm_monoid variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans_instance] theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g := Prodl_mul l f g end add_comm_monoid /- -- finset versions -/ /- Prod_semigroup : product indexed by a finset, with a default for the empty finset -/ namespace finset variable [comm_semigroup B] theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) := right_commutative_comp_right (@has_mul.mul B _) f (@mul.right_comm B _) namespace Prod_semigroup open Prodl_semigroup private theorem Prodl_semigroup_eq_Prodl_semigroup_of_perm (dflt : B) (f : A → B) {l₁ l₂ : list A} (p : perm l₁ l₂) : Prodl_semigroup dflt l₁ f = Prodl_semigroup dflt l₂ f := perm.induction_on p rfl -- nil nil (take x l₁ l₂ p ih, by rewrite [*Prodl_semigroup_cons, perm.foldl_eq_of_perm (mulf_rcomm f) p]) (take x y l, begin rewrite [*Prodl_semigroup_cons, *foldl_cons, ↑mulf, mul.comm] end) (take l₁ l₂ l₃ p₁ p₂ ih₁ ih₂, eq.trans ih₁ ih₂) definition Prod_semigroup (dflt : B) (s : finset A) (f : A → B) : B := quot.lift_on s (λ l, Prodl_semigroup dflt (elt_of l) f) (λ l₁ l₂ p, Prodl_semigroup_eq_Prodl_semigroup_of_perm dflt f p) theorem Prod_semigroup_empty (dflt : B) (f : A → B) : Prod_semigroup dflt ∅ f = dflt := rfl section deceqA include deceqA theorem Prod_semigroup_singleton (dflt : B) (f : A → B) (a : A) : Prod_semigroup dflt '{a} f = f a := rfl theorem Prod_semigroup_insert_insert (dflt : B) (f : A → B) {a₁ a₂ : A} {s : finset A} : a₂ ∉ s → a₁ ∉ insert a₂ s → Prod_semigroup dflt (insert a₁ (insert a₂ s)) f = f a₁ * Prod_semigroup dflt (insert a₂ s) f := quot.induction_on s (take l h₁ h₂, Prodl_semigroup_insert_insert_of_not_mem dflt f h₁ h₂) theorem Prod_semigroup_insert (dflt : B) (f : A → B) {a : A} {s : finset A} (anins : a ∉ s) (sne : s ≠ ∅) : Prod_semigroup dflt (insert a s) f = f a * Prod_semigroup dflt s f := obtain a' (a's : a' ∈ s), from exists_mem_of_ne_empty sne, have H : s = insert a' (erase a' s), from eq.symm (insert_erase a's), begin rewrite [H, Prod_semigroup_insert_insert dflt f !not_mem_erase (eq.subst H anins)] end end deceqA end Prod_semigroup end finset /- Prod: product indexed by a finset -/ namespace finset variable [comm_monoid B] theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} : perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f := λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1 definition Prod (s : finset A) (f : A → B) : B := quot.lift_on s (λ l, Prodl (elt_of l) f) (λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p) -- ∏ x ∈ s, f x notation `∏` binders `∈` s `, ` r:(scoped f, Prod s f) := r theorem Prod_empty (f : A → B) : Prod ∅ f = 1 := Prodl_nil f theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g := quot.induction_on s (take u, !Prodl_mul) theorem Prod_one (s : finset A) : Prod s (λ x, 1) = (1:B) := quot.induction_on s (take u, !Prodl_one) section deceqA include deceqA theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} : a ∈ s → Prod (insert a s) f = Prod s f := quot.induction_on s (λ l ainl, Prodl_insert_of_mem f ainl) theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} : a ∉ s → Prod (insert a s) f = f a * Prod s f := quot.induction_on s (λ l nainl, Prodl_insert_of_not_mem f nainl) theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := have H1 : disjoint s₁ s₂ → Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f, from quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, Prodl_union f d), H1 (disjoint_of_inter_eq_empty disj) theorem Prod_ext {s : finset A} {f g : A → B} : (∀{x}, x ∈ s → f x = g x) → Prod s f = Prod s g := finset.induction_on s (assume H, rfl) (take x s', assume H1 : x ∉ s', assume IH : (∀ {x : A}, x ∈ s' → f x = g x) → Prod s' f = Prod s' g, assume H2 : ∀{y}, y ∈ insert x s' → f y = g y, have H3 : ∀y, y ∈ s' → f y = g y, from take y, assume H', H2 (mem_insert_of_mem _ H'), have H4 : f x = g x, from H2 !mem_insert, by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4]) theorem Prod_singleton (a : A) (f : A → B) : Prod '{a} f = f a := have a ∉ ∅, from not_mem_empty a, by rewrite [Prod_insert_of_not_mem f this, Prod_empty, mul_one] theorem Prod_image {C : Type} [deceqC : decidable_eq C] {s : finset A} (f : C → B) {g : A → C} (H : set.inj_on g (to_set s)) : (∏ j ∈ image g s, f j) = (∏ i ∈ s, f (g i)) := begin induction s with a s anins ih, {rewrite [*Prod_empty]}, have injg : set.inj_on g (to_set s), from set.inj_on_of_inj_on_of_subset H (λ x, mem_insert_of_mem a), have g a ∉ g ' s, from suppose g a ∈ g ' s, obtain b [(bs : b ∈ s) (gbeq : g b = g a)], from exists_of_mem_image this, have aias : set.mem a (to_set (insert a s)), by rewrite to_set_insert; apply set.mem_insert a s, have bias : set.mem b (to_set (insert a s)), by rewrite to_set_insert; apply set.mem_insert_of_mem; exact bs, have b = a, from H bias aias gbeq, show false, from anins (eq.subst this bs), rewrite [image_insert, Prod_insert_of_not_mem _ this, Prod_insert_of_not_mem _ anins, ih injg] end theorem Prod_eq_of_bij_on {C : Type} [deceqC : decidable_eq C] {s : finset A} {t : finset C} (f : C → B) {g : A → C} (H : set.bij_on g (to_set s) (to_set t)) : (∏ j ∈ t, f j) = (∏ i ∈ s, f (g i)) := have g ' s = t, by apply eq_of_to_set_eq_to_set; rewrite to_set_image; exact set.image_eq_of_bij_on H, using this, by rewrite [-this, Prod_image f (and.left (and.right H))] end deceqA end finset /- Sum: sum indexed by a finset -/ namespace finset variable [add_comm_monoid B] local attribute add_comm_monoid.to_comm_monoid [trans_instance] definition Sum (s : finset A) (f : A → B) : B := Prod s f -- ∑ x ∈ s, f x notation `∑` binders `∈` s `, ` r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f theorem Sum_add (s : finset A) (f g : A → B) : Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = (0:B) := Prod_one s section deceqA include deceqA theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := Prod_ext H theorem Sum_singleton (a : A) (f : A → B) : Sum '{a} f = f a := Prod_singleton a f theorem Sum_image {C : Type} [deceqC : decidable_eq C] {s : finset A} (f : C → B) {g : A → C} (H : set.inj_on g (to_set s)) : (∑ j ∈ image g s, f j) = (∑ i ∈ s, f (g i)) := Prod_image f H theorem Sum_eq_of_bij_on {C : Type} [deceqC : decidable_eq C] {s : finset A} {t : finset C} (f : C → B) {g : A → C} (H : set.bij_on g (to_set s) (to_set t)) : (∑ j ∈ t, f j) = (∑ i ∈ s, f (g i)) := Prod_eq_of_bij_on f H end deceqA end finset /- -- set versions -/ namespace set open classical /- Prod: product indexed by a set -/ section Prod variable [comm_monoid B] noncomputable definition Prod (s : set A) (f : A → B) : B := finset.Prod (to_finset s) f -- ∏ x ∈ s, f x notation `∏` binders `∈` s `, ` r:(scoped f, Prod s f) := r theorem Prod_empty (f : A → B) : Prod ∅ f = 1 := by rewrite [↑Prod, to_finset_empty] theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod s f = 1 := by rewrite [↑Prod, to_finset_of_not_finite nfins] theorem Prod_mul (s : set A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g := by rewrite [↑Prod, finset.Prod_mul] theorem Prod_one (s : set A) : Prod s (λ x, 1) = (1:B) := by rewrite [↑Prod, finset.Prod_one] theorem Prod_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) : Prod (insert a s) f = Prod s f := by_cases (suppose finite s, have (#finset a ∈ set.to_finset s), by rewrite mem_to_finset_eq; apply H, by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_mem f this]) (assume nfs : ¬ finite s, have ¬ finite (insert a s), from assume H, nfs (finite_of_finite_insert H), by rewrite [Prod_of_not_finite nfs, Prod_of_not_finite this]) theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) : Prod (insert a s) f = f a * Prod s f := have (#finset a ∉ set.to_finset s), by rewrite mem_to_finset_eq; apply H, by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_not_mem f this] theorem Prod_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂] (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := begin rewrite [↑Prod, to_finset_union], apply finset.Prod_union, apply finset.eq_of_to_set_eq_to_set, rewrite [finset.to_set_inter, *to_set_to_finset, finset.to_set_empty, disj] end theorem Prod_ext {s : set A} {f g : A → B} (H : ∀{x}, x ∈ s → f x = g x) : Prod s f = Prod s g := by_cases (suppose finite s, by esimp [Prod]; apply finset.Prod_ext; intro x; rewrite [mem_to_finset_eq]; apply H) (assume nfs : ¬ finite s, by rewrite [*Prod_of_not_finite nfs]) theorem Prod_singleton (a : A) (f : A → B) : Prod '{a} f = f a := by rewrite [↑Prod, to_finset_insert, to_finset_empty, finset.Prod_singleton] theorem Prod_image {C : Type} {s : set A} [fins : finite s] (f : C → B) {g : A → C} (H : inj_on g s) : (∏ j ∈ image g s, f j) = (∏ i ∈ s, f (g i)) := begin have H' : inj_on g (finset.to_set (set.to_finset s)), by rewrite to_set_to_finset; exact H, rewrite [↑Prod, to_finset_image g s, finset.Prod_image f H'] end theorem Prod_eq_of_bij_on {C : Type} {s : set A} {t : set C} (f : C → B) {g : A → C} (H : bij_on g s t) : (∏ j ∈ t, f j) = (∏ i ∈ s, f (g i)) := by_cases (suppose finite s, have g ' s = t, from image_eq_of_bij_on H, using this, by rewrite [-this, Prod_image f (and.left (and.right H))]) (assume nfins : ¬ finite s, have nfint : ¬ finite t, from suppose finite t, have finite s, from finite_of_bij_on' H, show false, from nfins this, by rewrite [Prod_of_not_finite nfins, Prod_of_not_finite nfint]) end Prod /- Sum: sum indexed by a set -/ section Sum variable [add_comm_monoid B] local attribute add_comm_monoid.to_comm_monoid [trans_instance] noncomputable definition Sum (s : set A) (f : A → B) : B := Prod s f proposition Sum_def (s : set A) (f : A → B) : Sum s f = finset.Sum (to_finset s) f := rfl -- ∑ x ∈ s, f x notation `∑` binders `∈` s `, ` r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Sum s f = 0 := Prod_of_not_finite nfins f theorem Sum_add (s : set A) (f g : A → B) : Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g theorem Sum_zero (s : set A) : Sum s (λ x, 0) = (0:B) := Prod_one s theorem Sum_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H theorem Sum_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂] (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj theorem Sum_ext {s : set A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := Prod_ext H theorem Sum_singleton (a : A) (f : A → B) : Sum '{a} f = f a := Prod_singleton a f theorem Sum_image {C : Type} {s : set A} [fins : finite s] (f : C → B) {g : A → C} (H : inj_on g s) : (∑ j ∈ image g s, f j) = (∑ i ∈ s, f (g i)) := Prod_image f H theorem Sum_eq_of_bij_on {C : Type} {s : set A} {t : set C} (f : C → B) {g : A → C} (H : bij_on g s t) : (∑ j ∈ t, f j) = (∑ i ∈ s, f (g i)) := Prod_eq_of_bij_on f H end Sum /- Prod_semigroup : product indexed by a set, with a default for the empty set -/ namespace Prod_semigroup variable [comm_semigroup B] noncomputable definition Prod_semigroup (dflt : B) (s : set A) (f : A → B) : B := finset.Prod_semigroup.Prod_semigroup dflt (to_finset s) f theorem Prod_semigroup_empty (dflt : B) (f : A → B) : Prod_semigroup dflt ∅ f = dflt := by rewrite [↑Prod_semigroup, to_finset_empty] theorem Prod_semigroup_of_not_finite (dflt : B) {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod_semigroup dflt s f = dflt := by rewrite [↑Prod_semigroup, to_finset_of_not_finite nfins] theorem Prod_semigroup_singleton (dflt : B) (f : A → B) (a : A) : Prod_semigroup dflt ('{a}) f = f a := by rewrite [↑Prod_semigroup, to_finset_insert, to_finset_empty, finset.Prod_semigroup.Prod_semigroup_singleton dflt f a] theorem Prod_semigroup_insert_insert (dflt : B) (f : A → B) {a₁ a₂ : A} {s : set A} [h : finite s] : a₂ ∉ s → a₁ ∉ insert a₂ s → Prod_semigroup dflt (insert a₁ (insert a₂ s)) f = f a₁ * Prod_semigroup dflt (insert a₂ s) f := begin rewrite [↑Prod_semigroup, -+mem_to_finset_eq, +to_finset_insert], intro h1 h2, apply finset.Prod_semigroup.Prod_semigroup_insert_insert dflt f h1 h2 end theorem Prod_semigroup_insert (dflt : B) (f : A → B) {a : A} {s : set A} [h : finite s] : a ∉ s → s ≠ ∅ → Prod_semigroup dflt (insert a s) f = f a * Prod_semigroup dflt s f := begin rewrite [↑Prod_semigroup, -mem_to_finset_eq, +to_finset_insert, -finset.to_set_empty], intro h1 h2, apply finset.Prod_semigroup.Prod_semigroup_insert dflt f h1, intro h3, revert h2, rewrite [-h3, to_set_to_finset], intro h4, exact (h4 rfl) end end Prod_semigroup end set