---------------------------------------------------------------------------------------------------- --- Copyright (c) 2014 Parikshit Khanna. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic tools.helper_tactics data.nat.basic -- Theory list -- =========== -- -- Basic properties of lists. open eq.ops helper_tactics nat inductive list (T : Type) : Type := nil {} : list T, cons : T → list T → list T namespace list notation h :: t := cons h t notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l variable {T : Type} -- Concat -- ------ definition append (s t : list T) : list T := rec t (λx l u, x::u) s notation l₁ ++ l₂ := append l₁ l₂ theorem append.nil_left (t : list T) : nil ++ t = t theorem append.cons (x : T) (s t : list T) : x::s ++ t = x::(s ++ t) theorem append.nil_right (t : list T) : t ++ nil = t := induction_on t rfl (λx l H, H ▸ rfl) theorem append.assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) := induction_on s rfl (λx l H, H ▸ rfl) -- Length -- ------ definition length : list T → nat := rec 0 (λx l m, succ m) theorem length.nil : length (@nil T) = 0 theorem length.cons (x : T) (t : list T) : length (x::t) = succ (length t) theorem length.append (s t : list T) : length (s ++ t) = length s + length t := induction_on s (!add.zero_left⁻¹) (λx s H, !add.succ_left⁻¹ ▸ H ▸ rfl) -- add_rewrite length_nil length_cons -- Append -- ------ definition concat (x : T) : list T → list T := rec [x] (λy l l', y::l') theorem concat.nil (x : T) : concat x nil = [x] theorem concat.cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l) theorem concat.eq_append (x : T) (l : list T) : concat x l = l ++ [x] -- add_rewrite append_nil append_cons -- Reverse -- ------- definition reverse : list T → list T := rec nil (λx l r, r ++ [x]) theorem reverse.nil : reverse (@nil T) = nil theorem reverse.cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l) theorem reverse.singleton (x : T) : reverse [x] = [x] theorem reverse.append (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) := induction_on s (!append.nil_right⁻¹) (λx s H, calc reverse (x::s ++ t) = reverse t ++ reverse s ++ [x] : {H} ... = reverse t ++ (reverse s ++ [x]) : !append.assoc) theorem reverse.reverse (l : list T) : reverse (reverse l) = l := induction_on l rfl (λx l' H, H ▸ !reverse.append) theorem concat.eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) := induction_on l rfl (λy l' H, calc concat x (y::l') = (y::l') ++ [x] : !concat.eq_append ... = reverse (reverse (y::l')) ++ [x] : {!reverse.reverse⁻¹}) -- Head and tail -- ------------- definition head (x : T) : list T → T := rec x (λx l h, x) theorem head.nil (x : T) : head x nil = x theorem head.cons (x x' : T) (t : list T) : head x' (x::t) = x theorem head.concat {s : list T} (t : list T) (x : T) : s ≠ nil → (head x (s ++ t) = head x s) := cases_on s (take H : nil ≠ nil, absurd rfl H) (take x s, take H : x::s ≠ nil, calc head x (x::s ++ t) = head x (x::(s ++ t)) : {!append.cons} ... = x : !head.cons ... = head x (x::s) : !head.cons⁻¹) definition tail : list T → list T := rec nil (λx l b, l) theorem tail.nil : tail (@nil T) = nil theorem tail.cons (x : T) (l : list T) : tail (x::l) = l theorem cons_head_tail {l : list T} (x : T) : l ≠ nil → (head x l)::(tail l) = l := cases_on l (assume H : nil ≠ nil, absurd rfl H) (take x l, assume H : x::l ≠ nil, rfl) -- List membership -- --------------- definition mem (x : T) : list T → Prop := rec false (λy l H, x = y ∨ H) notation e ∈ s := mem e s theorem mem.nil (x : T) : x ∈ nil ↔ false := iff.rfl theorem mem.cons (x y : T) (l : list T) : x ∈ y::l ↔ (x = y ∨ x ∈ l) := iff.rfl theorem mem.concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t := induction_on s or.inr (take y s, assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, assume H1 : x ∈ y::s ++ t, have H2 : x = y ∨ x ∈ s ++ t, from H1, have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or.imp_or_right H2 IH, iff.elim_right or.assoc H3) theorem mem.or_imp_concat {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t := induction_on s (take H, or.elim H false_elim (assume H, H)) (take y s, assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, assume H : x ∈ y::s ∨ x ∈ t, or.elim H (assume H1, or.elim H1 (take H2 : x = y, or.inl H2) (take H2 : x ∈ s, or.inr (IH (or.inl H2)))) (assume H1 : x ∈ t, or.inr (IH (or.inr H1)))) theorem mem.concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t := iff.intro mem.concat_imp_or mem.or_imp_concat theorem mem.split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) := induction_on l (take H : x ∈ nil, false_elim (iff.elim_left !mem.nil H)) (take y l, assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t), assume H : x ∈ y::l, or.elim H (assume H1 : x = y, exists_intro nil (!exists_intro (H1 ▸ rfl))) (assume H1 : x ∈ l, obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1, obtain t (H3 : l = s ++ (x::t)), from H2, have H4 : y :: l = (y::s) ++ (x::t), from H3 ▸ rfl, !exists_intro (!exists_intro H4))) definition mem.is_decidable [instance] (H : decidable_eq T) (x : T) (l : list T) : decidable (x ∈ l) := rec_on l (decidable.inr (not_of_iff_false !mem.nil)) (take (h : T) (l : list T) (iH : decidable (x ∈ l)), show decidable (x ∈ h::l), from decidable.rec_on iH (assume Hp : x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, decidable.inl (or.inr Hp))) (assume Hn : ¬x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, have H1 : ¬(x = h ∨ x ∈ l), from assume H2 : x = h ∨ x ∈ l, or.elim H2 (assume Heq, absurd Heq Hne) (assume Hp, absurd Hp Hn), have H2 : ¬x ∈ h::l, from iff.elim_right (iff.flip_sign !mem.cons) H1, decidable.inr H2))) -- Find -- ---- section variable [H : decidable_eq T] include H definition find (x : T) : list T → nat := rec 0 (λy l b, if x = y then 0 else succ b) theorem find.nil (x : T) : find x nil = 0 theorem find.cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l) theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l := rec_on l (assume P₁ : ¬x ∈ nil, rfl) (take y l, assume iH : ¬x ∈ l → find x l = length l, assume P₁ : ¬x ∈ y::l, have P₂ : ¬(x = y ∨ x ∈ l), from iff.elim_right (iff.flip_sign !mem.cons) P₁, have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or P₂), calc find x (y::l) = if x = y then 0 else succ (find x l) : !find.cons ... = succ (find x l) : if_neg (and.elim_left P₃) ... = succ (length l) : {iH (and.elim_right P₃)} ... = length (y::l) : !length.cons⁻¹) end -- nth element -- ----------- definition nth (x : T) (l : list T) (n : nat) : T := nat.rec (λl, head x l) (λm f l, f (tail l)) n l theorem nth.zero (x : T) (l : list T) : nth x l 0 = head x l theorem nth.succ (x : T) (l : list T) (n : nat) : nth x l (succ n) = nth x (tail l) n end list