---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.core.inhabited -- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26. -- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))). -- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc). inductive pos_num : Type := one : pos_num, bit1 : pos_num → pos_num, bit0 : pos_num → pos_num theorem pos_num.is_inhabited [instance] : inhabited pos_num := inhabited.mk pos_num.one namespace pos_num definition inc (a : pos_num) : pos_num := rec (bit0 one) (λn r, bit0 r) (λn r, bit1 n) a definition num_bits (a : pos_num) : pos_num := rec one (λn r, inc r) (λn r, inc r) a end pos_num inductive num : Type := zero : num, pos : pos_num → num theorem num.is_inhabited [instance] : inhabited num := inhabited.mk num.zero namespace num definition inc (a : num) : num := rec (pos pos_num.one) (λp, pos (pos_num.inc p)) a definition num_bits (a : num) : num := rec (pos pos_num.one) (λp, pos (pos_num.num_bits p)) a end num