import logic inductive nat : Type := zero : nat, succ : nat → nat open eq namespace nat definition add (x y : nat) := nat.rec x (λ n r, succ r) y infixl `+`:65 := add theorem add_zero_left (x : nat) : x + zero = x := refl _ theorem add_succ_left (x y : nat) : x + (succ y) = succ (x + y) := refl _ definition is_zero (x : nat) := nat.rec true (λ n r, false) x theorem is_zero_zero : is_zero zero := eq_true_elim (refl _) theorem not_is_zero_succ (x : nat) : ¬ is_zero (succ x) := eq_false_elim (refl _) theorem dichotomy (m : nat) : m = zero ∨ (∃ n, m = succ n) := nat.rec (or.intro_left _ (refl zero)) (λ m H, or.intro_right _ (exists_intro m (refl (succ m)))) m theorem is_zero_to_eq (x : nat) (H : is_zero x) : x = zero := or.elim (dichotomy x) (assume Hz : x = zero, Hz) (assume Hs : (∃ n, x = succ n), exists_elim Hs (λ (w : nat) (Hw : x = succ w), absurd H (eq.subst (symm Hw) (not_is_zero_succ w)))) theorem is_not_zero_to_eq {x : nat} (H : ¬ is_zero x) : ∃ n, x = succ n := or.elim (dichotomy x) (assume Hz : x = zero, absurd (eq.subst (symm Hz) is_zero_zero) H) (assume Hs, Hs) theorem not_zero_add (x y : nat) (H : ¬ is_zero y) : ¬ is_zero (x + y) := exists_elim (is_not_zero_to_eq H) (λ (w : nat) (Hw : y = succ w), have H1 : x + y = succ (x + w), from calc x + y = x + succ w : {Hw} ... = succ (x + w) : refl _, have H2 : ¬ is_zero (succ (x + w)), from not_is_zero_succ (x+w), subst (symm H1) H2) inductive not_zero (x : nat) : Prop := intro : ¬ is_zero x → not_zero x theorem not_zero_not_is_zero {x : nat} (H : not_zero x) : ¬ is_zero x := not_zero.rec (λ H1, H1) H theorem not_zero_add_right [instance] (x y : nat) (H : not_zero y) : not_zero (x + y) := not_zero.intro (not_zero_add x y (not_zero_not_is_zero H)) theorem not_zero_succ [instance] (x : nat) : not_zero (succ x) := not_zero.intro (not_is_zero_succ x) variable dvd : Π (x y : nat) {H : not_zero y}, nat variables a b : nat set_option pp.implicit true reducible add check dvd a (succ b) check (λ H : not_zero b, dvd a b) check (succ zero) check a + (succ zero) check dvd a (a + (succ b)) reducible [off] add check dvd a (a + (succ b)) reducible add check dvd a (a + (succ b)) reducible [off] add check dvd a (a + (succ b)) end nat