---------------------------------------------------------------------------------------------------- --- Copyright (c) 2014 Parikshit Khanna. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Authors: Parikshit Khanna, Jeremy Avigad ---------------------------------------------------------------------------------------------------- -- Theory list -- =========== -- -- Basic properties of lists. import data.nat open nat eq_ops inductive list (T : Type) : Type := nil {} : list T, cons : T → list T → list T namespace list theorem list_induction_on {T : Type} {P : list T → Prop} (l : list T) (Hnil : P nil) (Hind : forall x : T, forall l : list T, forall H : P l, P (cons x l)) : P l := list.rec Hnil Hind l definition concat {T : Type} (s t : list T) : list T := list.rec t (fun x : T, fun l : list T, fun u : list T, cons x u) s theorem concat_nil {T : Type} (t : list T) : concat t nil = t := list_induction_on t (eq.refl (concat nil nil)) (take (x : T) (l : list T) (H : concat l nil = l), H ▸ (eq.refl (concat (cons x l) nil))) end list