import logic variable matrix.{l} : Type.{l} → Type.{l} variable same_dim {A : Type} : matrix A → matrix A → Prop variable add {A : Type} (m1 m2 : matrix A) {H : same_dim m1 m2} : matrix A theorem same_dim_irrel {A : Type} {m1 m2 : matrix A} {H1 H2 : same_dim m1 m2} : @add A m1 m2 H1 = @add A m1 m2 H2 := rfl open eq theorem same_dim_eq_args {A : Type} {m1 m2 m1' m2' : matrix A} (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : same_dim m1' m2' := subst H1 (subst H2 H) theorem add_congr {A : Type} (m1 m2 m1' m2' : matrix A) (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : @add A m1 m2 H = @add A m1' m2' (same_dim_eq_args H1 H2 H) := have base : ∀ (H1 : m1 = m1) (H2 : m2 = m2), @add A m1 m2 H = @add A m1 m2 (eq.rec (eq.rec H H1) H2), from assume H1 H2, rfl, have general : ∀ (H1 : m1 = m1') (H2 : m2 = m2'), @add A m1 m2 H = @add A m1' m2' (eq.rec (eq.rec H H1) H2), from subst H1 (subst H2 base), calc @add A m1 m2 H = @add A m1' m2' (eq.rec (eq.rec H H1) H2) : general H1 H2 ... = @add A m1' m2' (same_dim_eq_args H1 H2 H) : same_dim_irrel