/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: types.path Author: Floris van Doorn Ported from Coq HoTT Theorems about path types (identity types) -/ open eq sigma sigma.ops equiv is_equiv namespace eq /- Path spaces -/ /- The path spaces of a path space are not, of course, determined; they are just the higher-dimensional structure of the original space. -/ /- Transporting in path spaces. There are potentially a lot of these lemmas, so we adopt a uniform naming scheme: - `l` means the left endpoint varies - `r` means the right endpoint varies - `F` means application of a function to that (varying) endpoint. -/ variables {A B : Type} {a a1 a2 a3 a4 : A} {b b1 b2 : B} {f g : A → B} {h : B → A} definition transport_paths_l (p : a1 = a2) (q : a1 = a3) : transport (λx, x = a3) p q = p⁻¹ ⬝ q := by cases p; cases q; apply idp definition transport_paths_r (p : a2 = a3) (q : a1 = a2) : transport (λx, a1 = x) p q = q ⬝ p := by cases p; cases q; apply idp definition transport_paths_lr (p : a1 = a2) (q : a1 = a1) : transport (λx, x = x) p q = p⁻¹ ⬝ q ⬝ p := begin apply (eq.rec_on p), apply inverse, apply concat, apply con_idp, apply idp_con end definition transport_paths_Fl (p : a1 = a2) (q : f a1 = b) : transport (λx, f x = b) p q = (ap f p)⁻¹ ⬝ q := by cases p; cases q; apply idp definition transport_paths_Fr (p : a1 = a2) (q : b = f a1) : transport (λx, b = f x) p q = q ⬝ (ap f p) := by cases p; apply idp definition transport_paths_FlFr (p : a1 = a2) (q : f a1 = g a1) : transport (λx, f x = g x) p q = (ap f p)⁻¹ ⬝ q ⬝ (ap g p) := begin apply (eq.rec_on p), apply inverse, apply concat, apply con_idp, apply idp_con end definition transport_paths_FlFr_D {B : A → Type} {f g : Πa, B a} (p : a1 = a2) (q : f a1 = g a1) : transport (λx, f x = g x) p q = (apD f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apD g p) := begin apply (eq.rec_on p), apply inverse, apply concat, apply con_idp, apply concat, apply idp_con, apply ap_id end definition transport_paths_FFlr (p : a1 = a2) (q : h (f a1) = a1) : transport (λx, h (f x) = x) p q = (ap h (ap f p))⁻¹ ⬝ q ⬝ p := begin apply (eq.rec_on p), apply inverse, apply concat, apply con_idp, apply idp_con, end definition transport_paths_lFFr (p : a1 = a2) (q : a1 = h (f a1)) : transport (λx, x = h (f x)) p q = p⁻¹ ⬝ q ⬝ (ap h (ap f p)) := begin apply (eq.rec_on p), apply inverse, apply concat, apply con_idp, apply idp_con, end -- The Functorial action of paths is [ap]. /- Equivalences between path spaces -/ /- [ap_closed] is in init.equiv -/ definition equiv_ap (f : A → B) [H : is_equiv f] (a1 a2 : A) : (a1 = a2) ≃ (f a1 = f a2) := equiv.mk _ _ /- Path operations are equivalences -/ definition isequiv_path_inverse [instance] (a1 a2 : A) : is_equiv (@inverse A a1 a2) := is_equiv.mk inverse inv_inv inv_inv (λp, eq.rec_on p idp) definition equiv_path_inverse (a1 a2 : A) : (a1 = a2) ≃ (a2 = a1) := equiv.mk inverse _ definition isequiv_concat_l [instance] (p : a1 = a2) (a3 : A) : is_equiv (@concat _ a1 a2 a3 p) := is_equiv.mk (concat p⁻¹) (con_inv_cancel_left p) (inv_con_cancel_left p) (eq.rec_on p (λq, eq.rec_on q idp)) definition equiv_concat_l (p : a1 = a2) (a3 : A) : (a1 = a3) ≃ (a2 = a3) := equiv.mk (concat p⁻¹) _ definition isequiv_concat_r [instance] (p : a2 = a3) (a1 : A) : is_equiv (λq : a1 = a2, q ⬝ p) := is_equiv.mk (λq, q ⬝ p⁻¹) (λq, inv_con_cancel_right q p) (λq, con_inv_cancel_right q p) (eq.rec_on p (λq, eq.rec_on q idp)) definition equiv_concat_r (p : a2 = a3) (a1 : A) : (a1 = a2) ≃ (a1 = a3) := equiv.mk (λq, q ⬝ p) _ definition equiv_concat_lr (p : a1 = a2) (q : a3 = a4) : (a1 = a3) ≃ (a2 = a4) := equiv.trans (equiv_concat_l p a3) (equiv_concat_r q a2) -- a lot of this library still needs to be ported from Coq HoTT -- set_option pp.beta true -- check @cancel_left -- set_option pp.full_names true -- definition isequiv_whiskerL [instance] (p : a1 = a2) (q r : a2 = a3) -- : is_equiv (@whisker_left A a1 a2 a3 p q r) := -- begin -- fapply adjointify, -- {intro H, apply (!cancel_left H)}, -- {intro s, } -- -- reverts (q,r,a), apply (eq.rec_on p), esimp {whisker_left,concat2, idp, cancel_left, eq.rec_on}, intros, esimp, -- end -- check @whisker_right_con_whisker_left -- end /-begin refine (isequiv_adjointify _ _ _ _). - apply cancelL. - intros k. unfold cancelL. rewrite !whiskerL_pp. refine ((_ @@ 1 @@ _) ⬝ whiskerL_pVL p k). + destruct p, q; reflexivity. + destruct p, r; reflexivity. - intros k. unfold cancelL. refine ((_ @@ 1 @@ _) ⬝ whiskerL_VpL p k). + destruct p, q; reflexivity. + destruct p, r; reflexivity. end-/ definition is_equiv_con_eq_of_eq_inv_con (p : a1 = a3) (q : a2 = a3) (r : a2 = a1) : is_equiv (con_eq_of_eq_inv_con p q r) := begin cases r, apply (is_equiv_compose (λx, idp_con _ ⬝ x) (λx, x ⬝ idp_con _)), end definition equiv_moveR_Mp (p : a1 = a3) (q : a2 = a3) (r : a2 = a1) : (p = r⁻¹ ⬝ q) ≃ (r ⬝ p = q) := calc (p = r⁻¹ ⬝ q) ≃ (r ⬝ p = r ⬝ (r⁻¹ ⬝ q)) : equiv_concat_l r ... ≃ (r ⬝ p = q) : sorry definition equiv_moveR_Mp (p : a1 = a3) (q : a2 = a3) (r : a2 = a1) : (p = r⁻¹ ⬝ q) ≃ (r ⬝ p = q) := equiv. _ _ (con_eq_of_eq_inv_con p q r) _. Global Instance isequiv_moveR_pM {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : is_equiv (con_eq_of_eq_con_inv p q r). /-begin destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveR_pM {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : (r = q ⬝ p⁻¹) ≃ (r ⬝ p = q) := equiv.mk _ _ (con_eq_of_eq_con_inv p q r) _. Global Instance isequiv_moveR_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : is_equiv (inv_con_eq_of_eq_con p q r). /-begin destruct r. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveR_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : (p = r ⬝ q) ≃ (r⁻¹ ⬝ p = q) := equiv.mk _ _ (inv_con_eq_of_eq_con p q r) _. Global Instance isequiv_moveR_pV {A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : is_equiv (con_inv_eq_of_eq_con p q r). /-begin destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveR_pV {A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : (r = q ⬝ p) ≃ (r ⬝ p⁻¹ = q) := equiv.mk _ _ (con_inv_eq_of_eq_con p q r) _. Global Instance isequiv_moveL_Mp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : is_equiv (eq_con_of_inv_con_eq p q r). /-begin destruct r. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveL_Mp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : (r⁻¹ ⬝ q = p) ≃ (q = r ⬝ p) := equiv.mk _ _ (eq_con_of_inv_con_eq p q r) _. definition isequiv_moveL_pM {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : is_equiv (eq_con_of_con_inv_eq p q r). /-begin destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveL_pM {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : q ⬝ p⁻¹ = r ≃ q = r ⬝ p := equiv.mk _ _ _ (isequiv_moveL_pM p q r). Global Instance isequiv_moveL_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : is_equiv (eq_inv_con_of_con_eq p q r). /-begin destruct r. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveL_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : r ⬝ q = p ≃ q = r⁻¹ ⬝ p := equiv.mk _ _ (eq_inv_con_of_con_eq p q r) _. Global Instance isequiv_moveL_pV {A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : is_equiv (eq_con_inv_of_con_eq p q r). /-begin destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). end-/ definition equiv_moveL_pV {A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : q ⬝ p = r ≃ q = r ⬝ p⁻¹ := equiv.mk _ _ (eq_con_inv_of_con_eq p q r) _. end eq