/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Partially ordered additive groups, modeled on Isabelle's library. We could refine the structures, but we would have to declare more inheritance paths. -/ import logic.eq data.unit data.sigma data.prod import algebra.function algebra.binary import algebra.group algebra.order open eq eq.ops -- note: ⁻¹ will be overloaded namespace algebra variable {A : Type} /- partially ordered monoids, such as the natural numbers -/ structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A, add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A := (add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b)) (le_of_add_le_add_left : ∀a b c, le (add a b) (add a c) → le b c) (add_lt_add_left : ∀a b, lt a b → ∀c, lt (add c a) (add c b)) (lt_of_add_lt_add_left : ∀a b c, lt (add a b) (add a c) → lt b c) section variables [s : ordered_cancel_comm_monoid A] variables {a b c d e : A} include s theorem add_lt_add_left (H : a < b) (c : A) : c + a < c + b := !ordered_cancel_comm_monoid.add_lt_add_left H c theorem add_lt_add_right (H : a < b) (c : A) : a + c < b + c := begin rewrite [add.comm, {b + _}add.comm], exact (add_lt_add_left H c) end theorem add_le_add_left (H : a ≤ b) (c : A) : c + a ≤ c + b := !ordered_cancel_comm_monoid.add_le_add_left H c theorem add_le_add_right (H : a ≤ b) (c : A) : a + c ≤ b + c := (add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c) theorem add_le_add (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d := le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b) /- theorem add_lt_add_left (H : a < b) (c : A) : c + a < c + b := have H1 : c + a ≤ c + b, from add_le_add_left (le_of_lt H) c, have H2 : c + a ≠ c + b, from take H3 : c + a = c + b, have H4 : a = b, from add.left_cancel H3, ne_of_lt H H4, sorry--lt_of_le_of_ne H1 H2-/ theorem le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b := begin have H1 : a + b ≥ a + 0, from add_le_add_left H a, rewrite add_zero at H1, exact H1 end theorem le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a := begin have H1 : 0 + a ≤ b + a, from add_le_add_right H a, rewrite zero_add at H1, exact H1 end theorem add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d := lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b) theorem add_lt_add_of_le_of_lt (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d := lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b) theorem add_lt_add_of_lt_of_le (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d := lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b) theorem lt_add_of_pos_right (H : b > 0) : a < a + b := !add_zero ▸ add_lt_add_left H a theorem lt_add_of_pos_left (H : b > 0) : a < b + a := !zero_add ▸ add_lt_add_right H a -- here we start using le_of_add_le_add_left. theorem le_of_add_le_add_left (H : a + b ≤ a + c) : b ≤ c := !ordered_cancel_comm_monoid.le_of_add_le_add_left H theorem le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c := le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end) theorem lt_of_add_lt_add_left (H : a + b < a + c) : b < c := !ordered_cancel_comm_monoid.lt_of_add_lt_add_left H /-have H1 : b ≤ c, from le_of_add_le_add_left (le_of_lt H), have H2 : b ≠ c, from assume H3 : b = c, lt.irrefl _ (H3 ▸ H), sorry --lt_of_le_of_ne H1 H2-/ theorem lt_of_add_lt_add_right (H : a + b < c + b) : a < c := lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H) theorem add_le_add_left_iff (a b c : A) : a + b ≤ a + c ↔ b ≤ c := iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _) theorem add_le_add_right_iff (a b c : A) : a + b ≤ c + b ↔ a ≤ c := iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _) theorem add_lt_add_left_iff (a b c : A) : a + b < a + c ↔ b < c := iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _) theorem add_lt_add_right_iff (a b c : A) : a + b < c + b ↔ a < c := iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _) -- here we start using properties of zero. theorem add_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b := !zero_add ▸ (add_le_add Ha Hb) theorem add_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b := !zero_add ▸ (add_lt_add Ha Hb) theorem add_pos_of_pos_of_nonneg (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b := !zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb) theorem add_pos_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b := !zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb) theorem add_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 := !zero_add ▸ (add_le_add Ha Hb) theorem add_neg (Ha : a < 0) (Hb : b < 0) : a + b < 0 := !zero_add ▸ (add_lt_add Ha Hb) theorem add_neg_of_neg_of_nonpos (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 := !zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb) theorem add_neg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 := !zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb) -- TODO: add nonpos version (will be easier with simplifier) theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := iff.intro (assume Hab : a + b = 0, have Ha' : a ≤ 0, from calc a = a + 0 : by rewrite add_zero ... ≤ a + b : add_le_add_left Hb ... = 0 : Hab, have Haz : a = 0, from le.antisymm Ha' Ha, have Hb' : b ≤ 0, from calc b = 0 + b : by rewrite zero_add ... ≤ a + b : add_le_add_right Ha ... = 0 : Hab, have Hbz : b = 0, from le.antisymm Hb' Hb, and.intro Haz Hbz) (assume Hab : a = 0 ∧ b = 0, obtain Ha' Hb', from Hab, by rewrite [Ha', Hb', add_zero]) theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c := !zero_add ▸ add_le_add Ha Hbc theorem le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a := !add_zero ▸ add_le_add Hbc Ha theorem lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c := !zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc theorem lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a := !add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha theorem add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c := !zero_add ▸ add_le_add Ha Hbc theorem add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c := !add_zero ▸ add_le_add Hbc Ha theorem add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c := !zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc theorem add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c := !add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha theorem lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c := !zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc theorem lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a := !add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha theorem lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c := !zero_add ▸ add_lt_add Ha Hbc theorem lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a := !add_zero ▸ add_lt_add Hbc Ha theorem add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c := !zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc theorem add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c := !add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha theorem add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c := !zero_add ▸ add_lt_add Ha Hbc theorem add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c := !add_zero ▸ add_lt_add Hbc Ha end -- TODO: add properties of max and min /- partially ordered groups -/ structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A := (add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b)) (add_lt_add_left : ∀a b, lt a b → ∀ c, lt (add c a) (add c b)) --(le_of_add_le_add_left : ∀a b c, le (add a b) (add a c) → le b c) --(lt_of_add_lt_add_left : ∀a b c, lt (add a b) (add a c) → lt b c) theorem ordered_comm_group.le_of_add_le_add_left [s : ordered_comm_group A] {a b c : A} (H : a + b ≤ a + c) : b ≤ c := assert H' : -a + (a + b) ≤ -a + (a + c), from ordered_comm_group.add_le_add_left _ _ H _, by rewrite *neg_add_cancel_left at H'; exact H' theorem ordered_comm_group.lt_of_add_lt_add_left [s : ordered_comm_group A] {a b c : A} (H : a + b < a + c) : b < c := assert H' : -a + (a + b) < -a + (a + c), from ordered_comm_group.add_lt_add_left _ _ H _, by rewrite *neg_add_cancel_left at H'; exact H' definition ordered_comm_group.to_ordered_cancel_comm_monoid [trans-instance] [coercion] [reducible] [s : ordered_comm_group A] : ordered_cancel_comm_monoid A := ⦃ ordered_cancel_comm_monoid, s, add_left_cancel := @add.left_cancel A s, add_right_cancel := @add.right_cancel A s, le_of_add_le_add_left := @ordered_comm_group.le_of_add_le_add_left A s, lt_of_add_lt_add_left := @ordered_comm_group.lt_of_add_lt_add_left A s⦄ section variables [s : ordered_comm_group A] (a b c d e : A) include s theorem neg_le_neg {a b : A} (H : a ≤ b) : -b ≤ -a := have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H), !add_neg_cancel_right ▸ !zero_add ▸ add_le_add_right H1 (-b) theorem le_of_neg_le_neg {a b : A} (H : -b ≤ -a) : a ≤ b := neg_neg a ▸ neg_neg b ▸ neg_le_neg H theorem neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a := iff.intro le_of_neg_le_neg neg_le_neg theorem nonneg_of_neg_nonpos {a : A} (H : -a ≤ 0) : 0 ≤ a := le_of_neg_le_neg (neg_zero⁻¹ ▸ H) theorem neg_nonpos_of_nonneg {a : A} (H : 0 ≤ a) : -a ≤ 0 := neg_zero ▸ neg_le_neg H theorem neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a := iff.intro nonneg_of_neg_nonpos neg_nonpos_of_nonneg theorem nonpos_of_neg_nonneg {a : A} (H : 0 ≤ -a) : a ≤ 0 := le_of_neg_le_neg (neg_zero⁻¹ ▸ H) theorem neg_nonneg_of_nonpos {a : A} (H : a ≤ 0) : 0 ≤ -a := neg_zero ▸ neg_le_neg H theorem neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 := iff.intro nonpos_of_neg_nonneg neg_nonneg_of_nonpos theorem neg_lt_neg {a b : A} (H : a < b) : -b < -a := have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H), !add_neg_cancel_right ▸ !zero_add ▸ add_lt_add_right H1 (-b) theorem lt_of_neg_lt_neg {a b : A} (H : -b < -a) : a < b := neg_neg a ▸ neg_neg b ▸ neg_lt_neg H theorem neg_lt_neg_iff_lt : -a < -b ↔ b < a := iff.intro lt_of_neg_lt_neg neg_lt_neg theorem pos_of_neg_neg {a : A} (H : -a < 0) : 0 < a := lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H) theorem neg_neg_of_pos {a : A} (H : 0 < a) : -a < 0 := neg_zero ▸ neg_lt_neg H theorem neg_neg_iff_pos : -a < 0 ↔ 0 < a := iff.intro pos_of_neg_neg neg_neg_of_pos theorem neg_of_neg_pos {a : A} (H : 0 < -a) : a < 0 := lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H) theorem neg_pos_of_neg {a : A} (H : a < 0) : 0 < -a := neg_zero ▸ neg_lt_neg H theorem neg_pos_iff_neg : 0 < -a ↔ a < 0 := iff.intro neg_of_neg_pos neg_pos_of_neg theorem le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg ▸ !neg_le_neg_iff_le theorem neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg ▸ !neg_le_neg_iff_le theorem lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg ▸ !neg_lt_neg_iff_lt theorem neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg ▸ !neg_lt_neg_iff_lt theorem sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff theorem sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff theorem sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff theorem sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff theorem add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c := have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff), !neg_add_cancel_left ▸ H theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a := by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b := have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff), !add_neg_cancel_right ▸ H theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c := assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff), by rewrite neg_add_cancel_left at H; exact H theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c := by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b := assert H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff), by rewrite add_neg_cancel_right at H; exact H theorem le_add_iff_neg_add_le_left : a ≤ b + c ↔ -b + a ≤ c := assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff), by rewrite neg_add_cancel_left at H; exact H theorem le_add_iff_neg_add_le_right : a ≤ b + c ↔ -c + a ≤ b := by rewrite add.comm; apply le_add_iff_neg_add_le_left theorem le_add_iff_neg_le_sub_left : c ≤ a + b ↔ -a ≤ b - c := assert H : c ≤ a + b ↔ -a + c ≤ b, from !le_add_iff_neg_add_le, assert H' : -a + c ≤ b ↔ -a ≤ b - c, from !add_le_iff_le_sub_right, iff.trans H H' theorem le_add_iff_neg_le_sub_right : c ≤ a + b ↔ -b ≤ a - c := by rewrite add.comm; apply le_add_iff_neg_le_sub_left theorem add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c := assert H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff), begin rewrite neg_add_cancel_left at H, exact H end theorem add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c := by rewrite add.comm; apply add_lt_iff_lt_neg_add_left theorem add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a := begin rewrite [sub_eq_add_neg, {c+_}add.comm], apply add_lt_iff_lt_neg_add_left end theorem add_lt_add_iff_lt_sub_right : a + b < c ↔ a < c - b := assert H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff), by rewrite add_neg_cancel_right at H; exact H theorem lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c := assert H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff), by rewrite neg_add_cancel_left at H; exact H theorem lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b := by rewrite add.comm; apply lt_add_iff_neg_add_lt_left theorem lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c := by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left theorem lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b := by rewrite add.comm; apply lt_add_iff_sub_lt_left -- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0 theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d := calc a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b) ... = (c - d ≤ 0) : by rewrite H ... ↔ c ≤ d : sub_nonpos_iff_le c d theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d := calc a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b) ... = (c - d < 0) : by rewrite H ... ↔ c < d : sub_neg_iff_lt c d theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a := add_le_add_left (neg_le_neg H) c theorem sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c) theorem sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c := add_le_add Hab (neg_le_neg Hcd) theorem sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a := add_lt_add_left (neg_lt_neg H) c theorem sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c) theorem sub_lt_sub {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c := add_lt_add Hab (neg_lt_neg Hcd) theorem sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c := add_lt_add_of_le_of_lt Hab (neg_lt_neg Hcd) theorem sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c := add_lt_add_of_lt_of_le Hab (neg_le_neg Hcd) theorem sub_le_self (a : A) {b : A} (H : b ≥ 0) : a - b ≤ a := calc a - b = a + -b : rfl ... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H) ... = a : by rewrite add_zero theorem sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a := calc a - b = a + -b : rfl ... < a + 0 : add_lt_add_left (neg_neg_of_pos H) ... = a : by rewrite add_zero theorem add_le_add_three {a b c d e f : A} (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) : a + b + c ≤ d + e + f := begin apply le.trans, apply add_le_add, apply add_le_add, repeat assumption, apply le.refl end theorem sub_le_of_nonneg (H : b ≥ 0) : a - b ≤ a := add_le_of_le_of_nonpos (le.refl a) (neg_nonpos_of_nonneg H) end structure decidable_linear_ordered_comm_group [class] (A : Type) extends add_comm_group A, decidable_linear_order A := (add_le_add_left : ∀ a b, le a b → ∀ c, le (add c a) (add c b)) (add_lt_add_left : ∀ a b, lt a b → ∀ c, lt (add c a) (add c b)) private theorem add_le_add_left' (A : Type) (s : decidable_linear_ordered_comm_group A) (a b : A) : a ≤ b → (∀ c : A, c + a ≤ c + b) := decidable_linear_ordered_comm_group.add_le_add_left a b definition decidable_linear_ordered_comm_group.to_ordered_comm_group [trans-instance] [reducible] [coercion] (A : Type) [s : decidable_linear_ordered_comm_group A] : ordered_comm_group A := ⦃ordered_comm_group, s, le_of_lt := @le_of_lt A s, add_le_add_left := add_le_add_left' A s, lt_of_le_of_lt := @lt_of_le_of_lt A s, lt_of_lt_of_le := @lt_of_lt_of_le A s⦄ section variables [s : decidable_linear_ordered_comm_group A] variables {a b c d e : A} include s theorem eq_zero_of_neg_eq (H : -a = a) : a = 0 := lt.by_cases (assume H1 : a < 0, have H2: a > 0, from H ▸ neg_pos_of_neg H1, absurd H1 (lt.asymm H2)) (assume H1 : a = 0, H1) (assume H1 : a > 0, have H2: a < 0, from H ▸ neg_neg_of_pos H1, absurd H1 (lt.asymm H2)) definition abs (a : A) : A := if 0 ≤ a then a else -a theorem abs_of_nonneg (H : a ≥ 0) : abs a = a := if_pos H theorem abs_of_pos (H : a > 0) : abs a = a := if_pos (le_of_lt H) theorem abs_of_neg (H : a < 0) : abs a = -a := if_neg (not_le_of_gt H) theorem abs_zero : abs 0 = (0:A) := abs_of_nonneg (le.refl _) theorem abs_of_nonpos (H : a ≤ 0) : abs a = -a := decidable.by_cases (assume H1 : a = 0, by rewrite [H1, abs_zero, neg_zero]) (assume H1 : a ≠ 0, have H2 : a < 0, from lt_of_le_of_ne H H1, abs_of_neg H2) theorem abs_neg (a : A) : abs (-a) = abs a := or.elim (le.total 0 a) (assume H1 : 0 ≤ a, by rewrite [abs_of_nonpos (neg_nonpos_of_nonneg H1), neg_neg, abs_of_nonneg H1]) (assume H1 : a ≤ 0, by rewrite [abs_of_nonneg (neg_nonneg_of_nonpos H1), abs_of_nonpos H1]) theorem abs_nonneg (a : A) : abs a ≥ 0 := or.elim (le.total 0 a) (assume H : 0 ≤ a, by rewrite (abs_of_nonneg H); exact H) (assume H : a ≤ 0, calc 0 ≤ -a : neg_nonneg_of_nonpos H ... = abs a : abs_of_nonpos H) theorem abs_abs (a : A) : abs (abs a) = abs a := abs_of_nonneg !abs_nonneg theorem le_abs_self (a : A) : a ≤ abs a := or.elim (le.total 0 a) (assume H : 0 ≤ a, abs_of_nonneg H ▸ !le.refl) (assume H : a ≤ 0, le.trans H !abs_nonneg) theorem neg_le_abs_self (a : A) : -a ≤ abs a := !abs_neg ▸ !le_abs_self theorem eq_zero_of_abs_eq_zero (H : abs a = 0) : a = 0 := have H1 : a ≤ 0, from H ▸ le_abs_self a, have H2 : -a ≤ 0, from H ▸ abs_neg a ▸ le_abs_self (-a), le.antisymm H1 (nonneg_of_neg_nonpos H2) theorem abs_eq_zero_iff_eq_zero (a : A) : abs a = 0 ↔ a = 0 := iff.intro eq_zero_of_abs_eq_zero (assume H, congr_arg abs H ⬝ !abs_zero) theorem abs_pos_of_pos (H : a > 0) : abs a > 0 := by rewrite (abs_of_pos H); exact H theorem abs_pos_of_neg (H : a < 0) : abs a > 0 := !abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H) theorem abs_pos_of_ne_zero (H : a ≠ 0) : abs a > 0 := or.elim (lt_or_gt_of_ne H) abs_pos_of_neg abs_pos_of_pos theorem abs_sub (a b : A) : abs (a - b) = abs (b - a) := by rewrite [-neg_sub, abs_neg] theorem abs.by_cases {P : A → Prop} {a : A} (H1 : P a) (H2 : P (-a)) : P (abs a) := or.elim (le.total 0 a) (assume H : 0 ≤ a, (abs_of_nonneg H)⁻¹ ▸ H1) (assume H : a ≤ 0, (abs_of_nonpos H)⁻¹ ▸ H2) theorem abs_le_of_le_of_neg_le (H1 : a ≤ b) (H2 : -a ≤ b) : abs a ≤ b := abs.by_cases H1 H2 theorem abs_lt_of_lt_of_neg_lt (H1 : a < b) (H2 : -a < b) : abs a < b := abs.by_cases H1 H2 theorem ne_zero_of_abs_ne_zero {a : A} (H : abs a ≠ 0) : a ≠ 0 := assume Ha, H (Ha⁻¹ ▸ abs_zero) -- the triangle inequality section private lemma aux1 {a b : A} (H1 : a + b ≥ 0) (H2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b := decidable.by_cases (assume H3 : b ≥ 0, calc abs (a + b) ≤ abs (a + b) : le.refl ... = a + b : by rewrite (abs_of_nonneg H1) ... = abs a + b : by rewrite (abs_of_nonneg H2) ... = abs a + abs b : by rewrite (abs_of_nonneg H3)) (assume H3 : ¬ b ≥ 0, assert H4 : b ≤ 0, from le_of_lt (lt_of_not_ge H3), calc abs (a + b) = a + b : by rewrite (abs_of_nonneg H1) ... = abs a + b : by rewrite (abs_of_nonneg H2) ... ≤ abs a + 0 : add_le_add_left H4 ... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4) ... = abs a + abs b : by rewrite (abs_of_nonpos H4)) private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b := or.elim (le.total b 0) (assume H2 : b ≤ 0, have H3 : ¬ a < 0, from assume H4 : a < 0, have H5 : a + b < 0, from !add_zero ▸ add_lt_add_of_lt_of_le H4 H2, not_lt_of_ge H1 H5, aux1 H1 (le_of_not_gt H3)) (assume H2 : 0 ≤ b, begin have H3 : abs (b + a) ≤ abs b + abs a, begin rewrite add.comm at H1, exact aux1 H1 H2 end, rewrite [add.comm, {abs a + _}add.comm], exact H3 end) theorem abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b := or.elim (le.total 0 (a + b)) (assume H2 : 0 ≤ a + b, aux2 H2) (assume H2 : a + b ≤ 0, assert H3 : -a + -b = -(a + b), by rewrite neg_add, assert H4 : -(a + b) ≥ 0, from iff.mp' (neg_nonneg_iff_nonpos (a+b)) H2, have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end, calc abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add] ... ≤ abs (-a) + abs (-b) : aux2 H5 ... = abs a + abs b : by rewrite *abs_neg) end theorem abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) := have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from calc abs a - abs b + abs b = abs a : by rewrite sub_add_cancel ... = abs (a - b + b) : by rewrite sub_add_cancel ... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs, algebra.le_of_add_le_add_right H1 theorem abs_add_three (a b c : A) : abs (a + b + c) ≤ abs a + abs b + abs c := begin apply le.trans, apply abs_add_le_abs_add_abs, apply le.trans, apply add_le_add_right, apply abs_add_le_abs_add_abs, apply le.refl end end end algebra