/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "util/sstream.h" #include "kernel/abstract.h" #include "kernel/instantiate.h" #include "kernel/inductive/inductive.h" #include "library/io_state_stream.h" #include "library/locals.h" #include "library/util.h" #include "library/reducible.h" #include "library/tactic/tactic.h" #include "library/tactic/expr_to_tactic.h" #include "library/tactic/class_instance_synth.h" namespace lean { /** \brief Given eq_rec of the form @eq.rec.{l₂ l₁} A a (λ (a' : A) (h : a = a'), B a') b a p, apply the eq_rec_eq definition to produce the equality b = @eq.rec.{l₂ l₁} A a (λ (a' : A) (h : a = a'), B a') b a p The eq_rec_eq definition is of the form definition eq_rec_eq.{l₁ l₂} {A : Type.{l₁}} {B : A → Type.{l₂}} [h : is_hset A] {a : A} (b : B a) (p : a = a) : b = @eq.rec.{l₂ l₁} A a (λ (a' : A) (h : a = a'), B a') b a p := ... */ optional apply_eq_rec_eq(type_checker & tc, io_state const & ios, list const & ctx, expr const & eq_rec) { buffer args; expr const & eq_rec_fn = get_app_args(eq_rec, args); if (args.size() != 6) return none_expr(); expr const & p = args[5]; if (!is_local(p) || !is_eq_a_a(mlocal_type(p))) return none_expr(); expr const & A = args[0]; auto is_hset_A = mk_hset_instance(tc, ios, ctx, A); if (!is_hset_A) return none_expr(); levels ls = const_levels(eq_rec_fn); level l2 = head(ls); level l1 = head(tail(ls)); expr C = tc.whnf(args[2]).first; if (!is_lambda(C)) return none_expr(); expr a1 = mk_local(tc.mk_fresh_name(), binding_domain(C)); C = tc.whnf(instantiate(binding_body(C), a1)).first; if (!is_lambda(C)) return none_expr(); C = binding_body(C); if (!closed(C)) return none_expr(); expr B = Fun(a1, C); expr a = args[1]; expr b = args[3]; expr r = mk_constant("eq_rec_eq", {l1, l2}); return some_expr(mk_app({r, A, B, *is_hset_A, a, b, p})); } class inversion_tac { environment const & m_env; io_state const & m_ios; proof_state const & m_ps; list m_ids; name_generator m_ngen; substitution m_subst; std::unique_ptr m_tc; bool m_dep_elim; bool m_proof_irrel; unsigned m_nparams; unsigned m_nindices; unsigned m_nminors; declaration m_I_decl; declaration m_cases_on_decl; void init_inductive_info(name const & n) { m_dep_elim = inductive::has_dep_elim(m_env, n); m_nindices = *inductive::get_num_indices(m_env, n); m_nparams = *inductive::get_num_params(m_env, n); // This tactic is bases on cases_on construction which only has // minor premises for the introduction rules of this datatype. // For non-mutually recursive datatypes inductive::get_num_intro_rules == inductive::get_num_minor_premises m_nminors = *inductive::get_num_intro_rules(m_env, n); m_I_decl = m_env.get(n); m_cases_on_decl = m_env.get({n, "cases_on"}); } bool is_inversion_applicable(expr const & t) { buffer args; expr const & fn = get_app_args(t, args); if (!is_constant(fn)) return false; if (!inductive::is_inductive_decl(m_env, const_name(fn))) return false; if (!m_env.find(name{const_name(fn), "cases_on"}) || !m_env.find(name("eq"))) return false; if (m_proof_irrel && !m_env.find(name("heq"))) return false; init_inductive_info(const_name(fn)); if (args.size() != m_nindices + m_nparams) return false; return true; } pair mk_eq(expr const & lhs, expr const & rhs) { expr lhs_type = m_tc->infer(lhs).first; expr rhs_type = m_tc->infer(rhs).first; level l = sort_level(m_tc->ensure_type(lhs_type).first); constraint_seq cs; if (m_tc->is_def_eq(lhs_type, rhs_type, justification(), cs) && !cs) { return mk_pair(mk_app(mk_constant("eq", to_list(l)), lhs_type, lhs, rhs), mk_app(mk_constant({"eq", "refl"}, to_list(l)), rhs_type, rhs)); } else { return mk_pair(mk_app(mk_constant("heq", to_list(l)), lhs_type, lhs, rhs_type, rhs), mk_app(mk_constant({"heq", "refl"}, to_list(l)), rhs_type, rhs)); } } void assign(name const & n, expr const & val) { m_subst.assign(n, val); } goal generalize_indices(goal const & g, expr const & h, expr const & h_type) { buffer hyps; g.get_hyps(hyps); expr m = g.get_meta(); expr m_type = g.get_type(); name h_new_name = get_unused_name(local_pp_name(h), hyps); buffer I_args; expr const & I = get_app_args(h_type, I_args); expr h_new_type = mk_app(I, I_args.size() - m_nindices, I_args.data()); expr d = m_tc->whnf(m_tc->infer(h_new_type).first).first; name t_prefix("t"); unsigned nidx = 1; if (m_proof_irrel) { unsigned eq_idx = 1; name eq_prefix("H"); buffer ts; buffer eqs; buffer refls; auto add_eq = [&](expr const & lhs, expr const & rhs) { pair p = mk_eq(lhs, rhs); expr new_eq = p.first; expr new_refl = p.second; eqs.push_back(mk_local(m_ngen.next(), g.get_unused_name(eq_prefix, eq_idx), new_eq, binder_info())); refls.push_back(new_refl); }; for (unsigned i = I_args.size() - m_nindices; i < I_args.size(); i++) { expr t_type = binding_domain(d); expr t = mk_local(m_ngen.next(), g.get_unused_name(t_prefix, nidx), t_type, binder_info()); expr const & index = I_args[i]; add_eq(t, index); h_new_type = mk_app(h_new_type, t); hyps.push_back(t); ts.push_back(t); d = instantiate(binding_body(d), t); } expr h_new = mk_local(m_ngen.next(), h_new_name, h_new_type, local_info(h)); if (m_dep_elim) add_eq(h_new, h); hyps.push_back(h_new); expr new_type = Pi(eqs, g.get_type()); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps); goal new_g(new_meta, new_type); expr val = g.abstract(mk_app(mk_app(mk_app(Fun(ts, Fun(h_new, new_meta)), m_nindices, I_args.end() - m_nindices), h), refls)); assign(g.get_name(), val); return new_g; } else { // proof relevant version buffer ss; buffer ts; buffer refls; for (unsigned i = I_args.size() - m_nindices; i < I_args.size(); i++) { expr t_type = binding_domain(d); expr t = mk_local(m_ngen.next(), g.get_unused_name(t_prefix, nidx), t_type, binder_info()); h_new_type = mk_app(h_new_type, t); ss.push_back(I_args[i]); refls.push_back(mk_refl(*m_tc, I_args[i])); hyps.push_back(t); ts.push_back(t); d = instantiate(binding_body(d), t); } expr h_new = mk_local(m_ngen.next(), h_new_name, h_new_type, local_info(h)); ts.push_back(h_new); ss.push_back(h); refls.push_back(mk_refl(*m_tc, h)); hyps.push_back(h_new); buffer eqs; mk_telescopic_eq(*m_tc, ss, ts, eqs); ts.pop_back(); expr new_type = Pi(eqs, g.get_type()); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps); goal new_g(new_meta, new_type); expr val = g.abstract(mk_app(mk_app(mk_app(Fun(ts, Fun(h_new, new_meta)), m_nindices, I_args.end() - m_nindices), h), refls)); assign(g.get_name(), val); return new_g; } } list apply_cases_on(goal const & g) { buffer hyps; g.get_hyps(hyps); expr const & h = hyps.back(); expr const & h_type = mlocal_type(h); buffer I_args; expr const & I = get_app_args(h_type, I_args); expr g_type = g.get_type(); expr cases_on; if (length(m_cases_on_decl.get_univ_params()) != length(m_I_decl.get_univ_params())) { level g_lvl = sort_level(m_tc->ensure_type(g_type).first); cases_on = mk_constant({const_name(I), "cases_on"}, cons(g_lvl, const_levels(I))); } else { cases_on = mk_constant({const_name(I), "cases_on"}, const_levels(I)); } // add params cases_on = mk_app(cases_on, m_nparams, I_args.data()); // add type former expr type_former = g_type; if (m_dep_elim) type_former = Fun(h, type_former); type_former = Fun(m_nindices, I_args.end() - m_nindices, type_former); cases_on = mk_app(cases_on, type_former); // add indices cases_on = mk_app(cases_on, m_nindices, I_args.end() - m_nindices); // add h cases_on = mk_app(cases_on, h); buffer new_hyps; new_hyps.append(hyps.size() - m_nindices - 1, hyps.data()); // add a subgoal for each minor premise of cases_on expr cases_on_type = m_tc->whnf(m_tc->infer(cases_on).first).first; buffer new_goals; for (unsigned i = 0; i < m_nminors; i++) { expr new_type = binding_domain(cases_on_type); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(new_hyps, new_type)), new_hyps); goal new_g(new_meta, new_type); new_goals.push_back(new_g); cases_on = mk_app(cases_on, new_meta); cases_on_type = m_tc->whnf(binding_body(cases_on_type)).first; // the minor premises do not depend on each other } expr val = g.abstract(cases_on); assign(g.get_name(), val); return to_list(new_goals.begin(), new_goals.end()); } // Store in \c r the number of arguments for each cases_on minor. void get_minors_nargs(buffer & r) { expr cases_on_type = m_cases_on_decl.get_type(); for (unsigned i = 0; i < m_nparams + 1 + m_nindices + 1; i++) cases_on_type = binding_body(cases_on_type); for (unsigned i = 0; i < m_nminors; i++) { expr minor_type = binding_domain(cases_on_type); unsigned nargs = 0; while (is_pi(minor_type)) { nargs++; minor_type = binding_body(minor_type); } r.push_back(nargs); cases_on_type = binding_body(cases_on_type); } } list intros_minors_args(list gs) { buffer minors_nargs; get_minors_nargs(minors_nargs); lean_assert(length(gs) == minors_nargs.size()); buffer new_gs; for (unsigned i = 0; i < minors_nargs.size(); i++) { goal const & g = head(gs); unsigned nargs = minors_nargs[i]; buffer hyps; g.get_hyps(hyps); buffer new_hyps; new_hyps.append(hyps); expr g_type = g.get_type(); for (unsigned i = 0; i < nargs; i++) { expr type = binding_domain(g_type); name new_h_name; if (m_ids) { new_h_name = head(m_ids); m_ids = tail(m_ids); } else { new_h_name = binding_name(g_type); } expr new_h = mk_local(m_ngen.next(), get_unused_name(new_h_name, new_hyps), type, binder_info()); new_hyps.push_back(new_h); g_type = instantiate(binding_body(g_type), new_h); } g_type = head_beta_reduce(g_type); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(new_hyps, g_type)), new_hyps); goal new_g(new_meta, g_type); new_gs.push_back(new_g); expr val = g.abstract(Fun(nargs, new_hyps.end() - nargs, new_meta)); assign(g.get_name(), val); gs = tail(gs); } return to_list(new_gs.begin(), new_gs.end()); } struct inversion_exception : public exception { inversion_exception(char const * msg):exception(msg) {} inversion_exception(sstream const & strm):exception(strm) {} }; [[ noreturn ]] void throw_ill_formed_goal() { throw inversion_exception("ill-formed goal"); } [[ noreturn ]] void throw_ill_typed_goal() { throw inversion_exception("ill-typed goal"); } void throw_unification_eq_rec_failure() { throw inversion_exception("unification failed to eliminate eq.rec in homogeneous equality"); } // Process goal of the form: Pi (H : eq.rec A s C a s p = b), R // The idea is to reduce it to // Pi (H : a = b), R // when A is a hset // and then invoke intro_next_eq recursively. // // \remark \c type is the type of \c g after whnf goal intro_next_eq_rec(goal const & g, expr const & type) { lean_assert(is_pi(type)); buffer hyps; g.get_hyps(hyps); expr const & eq = binding_domain(type); expr const & lhs = app_arg(app_fn(eq)); expr const & rhs = app_arg(eq); lean_assert(is_eq_rec(lhs)); // lhs is of the form (eq.rec A s C a s p) // aux_eq is a term of type ((eq.rec A s C a s p) = a) auto aux_eq = apply_eq_rec_eq(*m_tc, m_ios, to_list(hyps), lhs); if (!aux_eq) throw_unification_eq_rec_failure(); buffer lhs_args; get_app_args(lhs, lhs_args); expr const & reduced_lhs = lhs_args[3]; expr new_eq = ::lean::mk_eq(*m_tc, reduced_lhs, rhs); expr new_type = update_binding(type, new_eq, binding_body(type)); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps); goal new_g(new_meta, new_type); // create assignment for g expr A = m_tc->infer(lhs).first; level lvl = sort_level(m_tc->ensure_type(A).first); // old_eq : eq.rec A s C a s p = b expr old_eq = mk_local(m_ngen.next(), binding_name(type), eq, binder_info()); // aux_eq : a = eq.rec A s C a s p expr trans_eq = mk_app({mk_constant(name{"eq", "trans"}, {lvl}), A, reduced_lhs, lhs, rhs, *aux_eq, old_eq}); // trans_eq : a = b expr val = g.abstract(Fun(old_eq, mk_app(new_meta, trans_eq))); assign(g.get_name(), val); return intro_next_eq(new_g); } // Process goal of the form: Ctx |- Pi (H : a == b), R when a and b have the same type // The idea is to reduce it to // Ctx, H : a = b |- R // This method is only used if the environment has a proof irrelevant Prop. // // \remark \c type is the type of \c g after whnf goal intro_next_heq(goal const & g, expr const & type) { lean_assert(m_proof_irrel); expr eq = binding_domain(type); lean_assert(const_name(get_app_fn(eq)) == "heq"); buffer args; expr const & heq_fn = get_app_args(eq, args); constraint_seq cs; if (m_tc->is_def_eq(args[0], args[2], justification(), cs) && !cs) { buffer hyps; g.get_hyps(hyps); expr new_eq = mk_app(mk_constant("eq", const_levels(heq_fn)), args[0], args[1], args[3]); expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), new_eq, binder_info()); expr new_type = instantiate(binding_body(type), new_hyp); hyps.push_back(new_hyp); expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type)); expr new_meta = mk_app(new_mvar, hyps); goal new_g(new_meta, new_type); hyps.pop_back(); expr H = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info()); expr to_eq = mk_app(mk_constant({"heq", "to_eq"}, const_levels(heq_fn)), args[0], args[1], args[3], H); expr val = g.abstract(Fun(H, mk_app(mk_app(new_mvar, hyps), to_eq))); assign(g.get_name(), val); return new_g; } else { throw inversion_exception("unification failed to reduce heterogeneous equality into homogeneous one"); } } // Process goal of the form: Ctx |- Pi (H : a = b), R // The idea is to reduce it to // Ctx, H : a = b |- R // // \remark \c type is the type of \c g after whnf goal intro_next_eq_simple(goal const & g, expr const & type) { expr eq = binding_domain(type); lean_assert(const_name(get_app_fn(eq)) == "eq"); buffer hyps; g.get_hyps(hyps); expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info()); expr new_type = instantiate(binding_body(type), new_hyp); hyps.push_back(new_hyp); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps); goal new_g(new_meta, new_type); expr val = g.abstract(Fun(new_hyp, new_meta)); assign(g.get_name(), val); return new_g; } goal intro_next_eq(goal const & g) { expr const & type = m_tc->whnf(g.get_type()).first; if (!is_pi(type)) throw_ill_formed_goal(); expr eq = binding_domain(type); expr const & eq_fn = get_app_fn(eq); if (!is_constant(eq_fn)) throw_ill_formed_goal(); if (const_name(eq_fn) == "eq") { expr const & lhs = app_arg(app_fn(eq)); if (!m_proof_irrel && is_eq_rec(lhs)) { return intro_next_eq_rec(g, type); } else { return intro_next_eq_simple(g, type); } } else if (m_proof_irrel && const_name(eq_fn) == "heq") { return intro_next_heq(g, type); } else { throw_ill_formed_goal(); } } // Split hyps into two "telescopes". // - non_deps : hypotheses that do not depend on rhs // - deps : hypotheses that depend on rhs (directly or indirectly) void split_deps(buffer const & hyps, expr const & rhs, buffer & non_deps, buffer & deps) { for (expr const & hyp : hyps) { expr const & hyp_type = mlocal_type(hyp); if (depends_on(hyp_type, rhs) || std::any_of(deps.begin(), deps.end(), [&](expr const & dep) { return depends_on(hyp_type, dep); })) { deps.push_back(hyp); } else { non_deps.push_back(hyp); } } } // The no_confusion constructions uses lifts in the proof relevant version. // We must apply lift.down to eliminate the auxiliary lift. expr lift_down(expr const & v) { if (!m_proof_irrel) { expr v_type = m_tc->whnf(m_tc->infer(v).first).first; if (!is_app(v_type)) throw_unification_eq_rec_failure(); expr const & lift = app_fn(v_type); if (!is_constant(lift) || const_name(lift) != "lift") throw_unification_eq_rec_failure(); return mk_app(mk_constant(name{"lift", "down"}, const_levels(lift)), app_arg(v_type), v); } else { return v; } } optional unify_eqs(goal g, unsigned neqs) { if (neqs == 0) return optional(g); // done g = intro_next_eq(g); buffer hyps; g.get_hyps(hyps); lean_assert(!hyps.empty()); expr eq = hyps.back(); buffer eq_args; get_app_args(mlocal_type(eq), eq_args); expr const & A = m_tc->whnf(eq_args[0]).first; expr lhs = m_tc->whnf(eq_args[1]).first; expr rhs = m_tc->whnf(eq_args[2]).first; constraint_seq cs; if (m_proof_irrel && m_tc->is_def_eq(lhs, rhs, justification(), cs) && !cs) { // deletion transition: t == t hyps.pop_back(); // remove t == t equality expr new_type = g.get_type(); expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps); goal new_g(new_meta, new_type); expr val = g.abstract(new_meta); assign(g.get_name(), val); return unify_eqs(new_g, neqs-1); } buffer lhs_args, rhs_args; expr const & lhs_fn = get_app_args(lhs, lhs_args); expr const & rhs_fn = get_app_args(rhs, rhs_args); expr const & g_type = g.get_type(); level const & g_lvl = sort_level(m_tc->ensure_type(g_type).first); if (is_constant(lhs_fn) && is_constant(rhs_fn) && inductive::is_intro_rule(m_env, const_name(lhs_fn)) && inductive::is_intro_rule(m_env, const_name(rhs_fn))) { buffer A_args; expr const & A_fn = get_app_args(A, A_args); if (!is_constant(A_fn) || !inductive::is_inductive_decl(m_env, const_name(A_fn))) throw_ill_typed_goal(); name no_confusion_name(const_name(A_fn), "no_confusion"); if (!m_env.find(no_confusion_name)) throw inversion_exception(sstream() << "construction '" << no_confusion_name << "' is not available in the environment"); expr no_confusion = mk_app(mk_app(mk_constant(no_confusion_name, cons(g_lvl, const_levels(A_fn))), A_args), g_type, lhs, rhs, eq); if (const_name(lhs_fn) == const_name(rhs_fn)) { // injectivity transition expr new_type = binding_domain(m_tc->whnf(m_tc->infer(no_confusion).first).first); if (m_proof_irrel) hyps.pop_back(); // remove processed equality expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type)); expr new_meta = mk_app(new_mvar, hyps); goal new_g(new_meta, new_type); expr val = g.abstract(lift_down(mk_app(no_confusion, new_meta))); assign(g.get_name(), val); unsigned A_nparams = *inductive::get_num_params(m_env, const_name(A_fn)); lean_assert(lhs_args.size() >= A_nparams); return unify_eqs(new_g, neqs - 1 + lhs_args.size() - A_nparams); } else { // conflict transition, eq is of the form c_1 ... = c_2 ..., where c_1 and c_2 are different constructors/intro rules. expr val = g.abstract(lift_down(no_confusion)); assign(g.get_name(), val); return optional(); // goal has been solved } } if (is_local(rhs)) { // solution transition, eq is of the form t = y, where y is a local constant // assume the current goal is of the form // // non_deps, deps[rhs], H : lhs = rhs |- C[rhs] // // We use non_deps to denote hypotheses that do not depend on rhs, // and deps[rhs] to denote hypotheses that depend on it. // // The resultant goal is of the form // // non_deps, deps[lhs] |- C[lhs] // // Now, assume ?m1 is a solution for the resultant goal. // Then, // // @eq.rec A lhs (fun rhs, Pi(deps[rhs], C[rhs])) (?m1 non_deps) rhs H deps[rhs] // // is a solution for the original goal. // Remark: A is the type of lhs and rhs hyps.pop_back(); // remove processed equality buffer non_deps, deps; split_deps(hyps, rhs, non_deps, deps); expr deps_g_type = Pi(deps, g_type); level eq_rec_lvl1 = sort_level(m_tc->ensure_type(deps_g_type).first); level eq_rec_lvl2 = sort_level(m_tc->ensure_type(A).first); expr tformer; if (m_proof_irrel) tformer = Fun(rhs, deps_g_type); else tformer = Fun(rhs, Fun(eq, deps_g_type)); expr eq_rec = mk_constant(name{"eq", "rec"}, {eq_rec_lvl1, eq_rec_lvl2}); eq_rec = mk_app(eq_rec, A, lhs, tformer); buffer new_hyps; new_hyps.append(non_deps); expr new_type = instantiate(abstract_local(deps_g_type, rhs), lhs); if (!m_proof_irrel) { new_type = abstract_local(new_type, eq); new_type = instantiate(new_type, mk_refl(*m_tc, lhs)); } for (unsigned i = 0; i < deps.size(); i++) { expr new_hyp = mk_local(m_ngen.next(), binding_name(new_type), binding_domain(new_type), binding_info(new_type)); new_hyps.push_back(new_hyp); new_type = instantiate(binding_body(new_type), new_hyp); } expr new_mvar = mk_metavar(m_ngen.next(), Pi(new_hyps, new_type)); expr new_meta = mk_app(new_mvar, new_hyps); goal new_g(new_meta, new_type); expr eq_rec_minor = mk_app(new_mvar, non_deps); eq_rec = mk_app(eq_rec, eq_rec_minor, rhs, eq); expr val = g.abstract(mk_app(eq_rec, deps)); assign(g.get_name(), val); return unify_eqs(new_g, neqs-1); } else if (is_local(lhs)) { // flip equation and reduce to previous case if (m_proof_irrel) hyps.pop_back(); // remove processed equality expr symm_eq = mk_eq(rhs, lhs).first; expr new_type = mk_arrow(symm_eq, g_type); expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type)); expr new_meta = mk_app(new_mvar, hyps); goal new_g(new_meta, new_type); level eq_symm_lvl = sort_level(m_tc->ensure_type(A).first); expr symm_pr = mk_constant(name{"eq", "symm"}, {eq_symm_lvl}); symm_pr = mk_app(symm_pr, A, lhs, rhs, eq); expr val = g.abstract(mk_app(new_meta, symm_pr)); assign(g.get_name(), val); return unify_eqs(new_g, neqs); } // unification failed return optional(g); } list unify_eqs(list const & gs) { unsigned neqs = m_nindices + (m_dep_elim ? 1 : 0); buffer new_goals; for (goal const & g : gs) { if (optional new_g = unify_eqs(g, neqs)) new_goals.push_back(*new_g); } return to_list(new_goals.begin(), new_goals.end()); } public: inversion_tac(environment const & env, io_state const & ios, proof_state const & ps, list const & ids): m_env(env), m_ios(ios), m_ps(ps), m_ids(ids), m_ngen(m_ps.get_ngen()), m_subst(m_ps.get_subst()), m_tc(mk_type_checker(m_env, m_ngen.mk_child(), m_ps.relax_main_opaque())) { m_proof_irrel = m_env.prop_proof_irrel(); } optional execute(name const & n) { try { goals const & gs = m_ps.get_goals(); if (empty(gs)) return none_proof_state(); goal g = head(gs); goals tail_gs = tail(gs); auto p = g.find_hyp(n); if (!p) return none_proof_state(); expr const & h = p->first; expr h_type = m_tc->whnf(mlocal_type(h)).first; if (!is_inversion_applicable(h_type)) return none_proof_state(); goal g1 = generalize_indices(g, h, h_type); list gs2 = apply_cases_on(g1); list gs3 = intros_minors_args(gs2); list gs4 = unify_eqs(gs3); proof_state new_s(m_ps, append(gs4, tail_gs), m_subst, m_ngen); return some_proof_state(new_s); } catch (inversion_exception & ex) { return none_proof_state(); } } }; tactic inversion_tactic(name const & n, list const & ids) { auto fn = [=](environment const & env, io_state const & ios, proof_state const & ps) -> optional { inversion_tac tac(env, ios, ps, ids); return tac.execute(n); }; return tactic01(fn); } void initialize_inversion_tactic() { register_tac(name({"tactic", "inversion"}), [](type_checker &, elaborate_fn const &, expr const & e, pos_info_provider const *) { name n = tactic_expr_to_id(app_arg(e), "invalid 'inversion/cases' tactic, argument must be an identifier"); return inversion_tactic(n, list()); }); register_tac(name({"tactic", "inversion_with"}), [](type_checker &, elaborate_fn const &, expr const & e, pos_info_provider const *) { name n = tactic_expr_to_id(app_arg(app_fn(e)), "invalid 'cases-with' tactic, argument must be an identifier"); buffer ids; get_tactic_id_list_elements(app_arg(e), ids, "invalid 'cases-with' tactic, list of identifiers expected"); return inversion_tactic(n, to_list(ids.begin(), ids.end())); }); } void finalize_inversion_tactic() {} }