/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn The "equivalence closure" of a type-valued relation. Given a binary type-valued relation (fibration), we add reflexivity, symmetry and transitivity terms -/ import .relation eq2 arity open eq inductive e_closure {A : Type} (R : A → A → Type) : A → A → Type := | of_rel : Π{a a'} (r : R a a'), e_closure R a a' | refl : Πa, e_closure R a a | symm : Π{a a'} (r : e_closure R a a'), e_closure R a' a | trans : Π{a a' a''} (r : e_closure R a a') (r' : e_closure R a' a''), e_closure R a a'' namespace e_closure infix `⬝r`:75 := e_closure.trans postfix `⁻¹ʳ`:(max+10) := e_closure.symm notation `[`:max a `]`:0 := e_closure.of_rel a abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := refl R a end e_closure namespace relation section parameters {A : Type} (R : A → A → Type) local abbreviation T := e_closure R variables ⦃a a' a'' : A⦄ {s : R a a'} {r : T a a} {B C : Type} parameter {R} protected definition e_closure.elim [unfold 8] {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' := begin induction t, exact e r, reflexivity, exact v_0⁻¹, exact v_0 ⬝ v_1 end definition ap_e_closure_elim_h [unfold 12] {B C : Type} {f : A → B} {g : B → C} (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim e' t := begin induction t, apply p, reflexivity, exact ap_inv g (e_closure.elim e r) ⬝ inverse2 v_0, exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (v_0 ◾ v_1) end definition ap_e_closure_elim {B C : Type} {f : A → B} (g : B → C) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t := ap_e_closure_elim_h e (λa a' s, idp) t definition ap_e_closure_elim_h_eq {B C : Type} {f : A → B} {g : B → C} (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap_e_closure_elim_h e p t = ap_e_closure_elim g e t ⬝ ap (λx, e_closure.elim x t) (eq_of_homotopy3 p) := begin fapply homotopy3.rec_on p, intro q, esimp at q, induction q, esimp, rewrite eq_of_homotopy3_id end theorem ap_ap_e_closure_elim_h {B C D : Type} {f : A → B} {g : B → C} (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : square (ap (ap h) (ap_e_closure_elim_h e p t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) := begin induction t, { esimp, apply square_of_eq, exact !con.right_inv ⬝ !con.left_inv⁻¹}, { apply ids}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,-inv2_inv], exact !ap_inv2 ⬝v square_inv2 v_0}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_con)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,con2_inv], refine !ap_con2 ⬝v square_con2 v_0 v_1}, end theorem ap_ap_e_closure_elim {B C D : Type} {f : A → B} (g : B → C) (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : square (ap (ap h) (ap_e_closure_elim g e t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim h (λa a' r, ap g (e r)) t) := !ap_ap_e_closure_elim_h open e_closure definition is_equivalence_e_closure : is_equivalence T := begin constructor, intro a, exact rfl, intro a a' t, exact t⁻¹ʳ, intro a a' a'' t t', exact t ⬝r t', end definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : e_closure R a a') (p : a = a'') : e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t := by induction p; exact !idp_con⁻¹ definition e_closure.transport_right {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : e_closure R a a') (p : a' = a'') : e_closure.elim e (p ▸ t) = e_closure.elim e t ⬝ (ap f p) := by induction p; reflexivity definition e_closure.transport_lr {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : e_closure R a a) (p : a = a') : e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) := by induction p; esimp; exact !idp_con⁻¹ --dependent elimination: variables {P : B → Type} {Q : C → Type} {f : A → B} {g : B → C} {f' : Π(a : A), P (f a)} protected definition e_closure.elimo [unfold 6] (p : Π⦃a a' : A⦄, R a a' → f a = f a') (po : Π⦃a a' : A⦄ (s : R a a'), f' a =[p s] f' a') (t : T a a') : f' a =[e_closure.elim p t] f' a' := begin induction t, exact po r, constructor, exact v_0⁻¹ᵒ, exact v_0 ⬝o v_1 end definition ap_e_closure_elimo_h [unfold 12] {g' : Πb, Q (g b)} (p : Π⦃a a' : A⦄, R a a' → f a = f a') --(po : Π⦃a a' : A⦄ (s : R a a'), f' a =[p s] f' a') (po : Π⦃a a' : A⦄ (s : R a a'), g' (f a) =[p s] g' (f a')) (q : Π⦃a a' : A⦄ (s : R a a'), apdo g' (p s) = po s) (t : T a a') : apdo g' (e_closure.elim p t) = e_closure.elimo p po t := begin induction t, apply q, reflexivity, esimp [e_closure.elim], exact apdo_inv g' (e_closure.elim p r) ⬝ v_0⁻²ᵒ, exact apdo_con g' (e_closure.elim p r) (e_closure.elim p r') ⬝ (v_0 ◾o v_1) end end end relation