/- Copyright (c) 2015 Ulrik Buchholtz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ulrik Buchholtz -/ import types.trunc open eq is_trunc is_equiv nat equiv trunc function -- TODO(Ulrik) move this to somewhere else (cannot be sigma b/c dep. on fiber) namespace sigma variables {A : Type} {P Q : A → Type} definition total [reducible] (f : Πa, P a → Q a) : (Σa, P a) → (Σa, Q a) := sigma.rec (λa p, ⟨a , f a p⟩) -- Theorem 4.7.6 --definition fiber_total_equiv (f : Πa, P a → Q a) {a : A} (q : Q a) -- : fiber (total f) ⟨a , q⟩ ≃ fiber (f a) q := --sorry end sigma -- TODO(Ulrik) move this to somewhere else (cannot be unit b/c dep. on fiber) namespace unit definition fiber_star_equiv (A : Type) : fiber (λx : A, star) star ≃ A := begin fapply equiv.MK, { intro f, cases f with a H, exact a }, { intro a, apply fiber.mk a, reflexivity }, { intro a, reflexivity }, { intro f, cases f with a H, change fiber.mk a (refl star) = fiber.mk a H, rewrite [is_hset.elim H (refl star)] } end end unit namespace homotopy definition is_conn (n : trunc_index) (A : Type) : Type := is_contr (trunc n A) definition is_conn_map (n : trunc_index) {A B : Type} (f : A → B) : Type := Πb : B, is_conn n (fiber f b) definition is_conn_of_map_to_unit (n : trunc_index) (A : Type) : is_conn_map n (λx : A, unit.star) → is_conn n A := begin intro H, unfold is_conn_map at H, rewrite [-(ua (unit.fiber_star_equiv A))], exact (H unit.star) end -- Lemma 7.5.2 definition minus_one_conn_of_surjective {A B : Type} (f : A → B) : is_surjective f → is_conn_map -1 f := begin intro H, intro b, exact @is_contr_of_inhabited_hprop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b), end definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B) : is_conn_map -1 f → is_surjective f := begin intro H, intro b, exact @center (∥fiber f b∥) (H b), end definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥ A ∥ := λH, @center (∥A∥) H definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A := @is_contr_of_inhabited_hprop (∥A∥) (is_trunc_trunc -1 A) end homotopy