/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about arrow types (function spaces) -/ import types.pi open eq equiv is_equiv funext pi equiv.ops is_trunc unit namespace pi variables {A A' : Type} {B B' : Type} {C : A → B → Type} {a a' a'' : A} {b b' b'' : B} {f g : A → B} -- all lemmas here are special cases of the ones for pi-types /- Functorial action -/ variables (f0 : A' → A) (f1 : B → B') definition arrow_functor [unfold-full] : (A → B) → (A' → B') := pi_functor f0 (λa, f1) /- Equivalences -/ definition is_equiv_arrow_functor [constructor] [H0 : is_equiv f0] [H1 : is_equiv f1] : is_equiv (arrow_functor f0 f1) := is_equiv_pi_functor f0 (λa, f1) definition arrow_equiv_arrow_rev [constructor] (f0 : A' ≃ A) (f1 : B ≃ B') : (A → B) ≃ (A' → B') := equiv.mk _ (is_equiv_arrow_functor f0 f1) definition arrow_equiv_arrow [constructor] (f0 : A ≃ A') (f1 : B ≃ B') : (A → B) ≃ (A' → B') := arrow_equiv_arrow_rev (equiv.symm f0) f1 variable (A) definition arrow_equiv_arrow_right [constructor] (f1 : B ≃ B') : (A → B) ≃ (A → B') := arrow_equiv_arrow_rev equiv.refl f1 variables {A} (B) definition arrow_equiv_arrow_left_rev [constructor] (f0 : A' ≃ A) : (A → B) ≃ (A' → B) := arrow_equiv_arrow_rev f0 equiv.refl definition arrow_equiv_arrow_left [constructor] (f0 : A ≃ A') : (A → B) ≃ (A' → B) := arrow_equiv_arrow f0 equiv.refl variables {B} definition arrow_equiv_arrow_right' [constructor] (f1 : A → (B ≃ B')) : (A → B) ≃ (A → B') := pi_equiv_pi_id f1 /- Equivalence if one of the types is contractible -/ variables (A B) definition arrow_equiv_of_is_contr_left [constructor] [H : is_contr A] : (A → B) ≃ B := !pi_equiv_of_is_contr_left definition arrow_equiv_of_is_contr_right [constructor] [H : is_contr B] : (A → B) ≃ unit := !pi_equiv_of_is_contr_right /- Interaction with other type constructors -/ -- most of these are in the file of the other type constructor definition arrow_empty_left [constructor] : (empty → B) ≃ unit := !pi_empty_left definition arrow_unit_left [constructor] : (unit → B) ≃ B := !arrow_equiv_of_is_contr_left definition arrow_unit_right [constructor] : (A → unit) ≃ unit := !arrow_equiv_of_is_contr_right variables {A B} /- Transport -/ definition arrow_transport {B C : A → Type} (p : a = a') (f : B a → C a) : (transport (λa, B a → C a) p f) ~ (λb, p ▸ f (p⁻¹ ▸ b)) := eq.rec_on p (λx, idp) /- Pathovers -/ definition arrow_pathover {B C : A → Type} {f : B a → C a} {g : B a' → C a'} {p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[p] g b') : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, exact eq_of_pathover_idp (r b b idpo), end definition arrow_pathover_left {B C : A → Type} {f : B a → C a} {g : B a' → C a'} {p : a = a'} (r : Π(b : B a), f b =[p] g (p ▸ b)) : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, exact eq_of_pathover_idp (r b), end definition arrow_pathover_right {B C : A → Type} {f : B a → C a} {g : B a' → C a'} {p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[p] g b') : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, exact eq_of_pathover_idp (r b), end definition arrow_pathover_constant {B : Type} {C : A → Type} {f : B → C a} {g : B → C a'} {p : a = a'} (r : Π(b : B), f b =[p] g b) : f =[p] g := pi_pathover_constant r /- The fact that the arrow type preserves truncation level is a direct consequence of the fact that pi's preserve truncation level -/ definition is_trunc_arrow (B : Type) (n : trunc_index) [H : is_trunc n B] : is_trunc n (A → B) := _ end pi