-- Copyright (c) 2014 Jeremy Avigad. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad, Leonardo de Moura -- algebra.group -- ============= -- Various structures with 1, *, inv, including groups. import logic.eq import data.unit data.sigma data.prod import algebra.function algebra.binary open eq namespace algebra structure has_mul [class] (A : Type) := mk :: (mul : A → A → A) structure has_one [class] (A : Type) := mk :: (one : A) structure has_inv [class] (A : Type) := mk :: (inv : A → A) infixl `*` := has_mul.mul postfix `⁻¹` := has_inv.inv notation 1 := !has_one.one structure semigroup [class] (A : Type) extends has_mul A := mk :: (assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c)) set_option pp.notation false -- set_option pp.implicit true -- set_option pp.coercions true print instances has_mul section variables {A : Type} [s : semigroup A] include s variables a b : A example : a * b = semigroup.mul a b := rfl theorem mul_assoc (a b c : A) : a * b * c = a * (b * c) := semigroup.assoc a b c end structure comm_semigroup [class] (A : Type) extends semigroup A := mk :: (comm : ∀a b, mul a b = mul b a) namespace comm_semigroup variables {A : Type} [s : comm_semigroup A] include s variables a b c : A theorem mul_comm : a * b = b * a := !comm_semigroup.comm theorem mul_left_comm : a * (b * c) = b * (a * c) := binary.left_comm mul_comm mul_assoc a b c end comm_semigroup structure monoid [class] (A : Type) extends semigroup A, has_one A := mk :: (right_id : ∀a, mul a one = a) (left_id : ∀a, mul one a = a) section variables {A : Type} [s : monoid A] variable a : A include s theorem mul_right_id : a * 1 = a := !monoid.right_id theorem mul_left_id : 1 * a = a := !monoid.left_id end structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A print prefix algebra.comm_monoid structure Semigroup := mk :: (carrier : Type) (struct : semigroup carrier) coercion [persistent] Semigroup.carrier instance [persistent] Semigroup.struct structure CommSemigroup := mk :: (carrier : Type) (struct : comm_semigroup carrier) coercion [persistent] CommSemigroup.carrier instance [persistent] CommSemigroup.struct structure Monoid := mk :: (carrier : Type) (struct : monoid carrier) coercion [persistent] Monoid.carrier instance [persistent] Monoid.struct structure CommMonoid := mk :: (carrier : Type) (struct : comm_monoid carrier) coercion [persistent] CommMonoid.carrier instance [persistent] CommMonoid.struct end algebra open algebra section examples theorem test1 {S : Semigroup} (a b c d : S) : a * (b * c) * d = a * b * (c * d) := calc a * (b * c) * d = a * b * c * d : mul_assoc ... = a * b * (c * d) : mul_assoc theorem test2 {M : CommSemigroup} (a b : M) : a * b = a * b := rfl theorem test3 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) := calc a * (b * c) * d = a * b * c * d : mul_assoc ... = a * b * (c * d) : mul_assoc -- for test4b to work, we need instances at the level of the bundled structures as well definition Monoid_Semigroup [coercion] (M : Monoid) : Semigroup := Semigroup.mk (Monoid.carrier M) _ theorem test4 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) := test1 a b c d theorem test5 {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : mul_right_id ... = a * (b * c) : mul_assoc theorem test5a {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : mul_right_id ... = a * (b * c) : mul_assoc theorem test5b {A : Type} {M : monoid A} (a b c : A) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : mul_right_id ... = a * (b * c) : mul_assoc theorem test6 {M : CommMonoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : mul_right_id ... = a * (b * c) : mul_assoc end examples