/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ --note: modify definition in category.set import .constructions.functor .constructions.hset .constructions.product .constructions.opposite .adjoint open category eq category.ops functor prod.ops is_trunc iso namespace yoneda -- set_option class.conservative false definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc _ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _) ... = _ : by rewrite (assoc f2 f3 f4) definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} := functor.mk (λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2) (λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y) (h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1)) (λ x, @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2)) (λ h, concat (by apply @id_left) (by apply @id_right))) (λ x y z g f, eq_of_homotopy (by intros; apply @representable_functor_assoc)) end yoneda open is_equiv equiv namespace functor open prod nat_trans variables {C D E : Precategory} (F : C ×c D ⇒ E) (G : C ⇒ E ^c D) definition functor_curry_ob [reducible] [constructor] (c : C) : E ^c D := functor.mk (λd, F (c,d)) (λd d' g, F (id, g)) (λd, !respect_id) (λd₁ d₂ d₃ g' g, calc F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_id ... = F ((id,g') ∘ (id, g)) : by esimp ... = F (id,g') ∘ F (id, g) : by rewrite respect_comp) local abbreviation Fob := @functor_curry_ob definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' := begin fapply @nat_trans.mk, {intro d, exact F (f, id)}, {intro d d' g, calc F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F ... = F (f, g ∘ id) : by rewrite id_left ... = F (f, g) : by rewrite id_right ... = F (f ∘ id, g) : by rewrite id_right ... = F (f ∘ id, id ∘ g) : by rewrite id_left ... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ } end local abbreviation Fhom := @functor_curry_hom theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) : (Fhom F f) d = to_fun_hom F (f, id) := idp theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id := nat_trans_eq (λd, respect_id F _) theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c') : Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f := begin apply @nat_trans_eq, intro d, calc natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by rewrite functor_curry_hom_def ... = F (f' ∘ f, id ∘ id) : by rewrite id_id ... = F ((f',id) ∘ (f, id)) : by esimp ... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F] ... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp end definition functor_curry [reducible] [constructor] : C ⇒ E ^c D := functor.mk (functor_curry_ob F) (functor_curry_hom F) (functor_curry_id F) (functor_curry_comp F) definition functor_uncurry_ob [reducible] (p : C ×c D) : E := to_fun_ob (G p.1) p.2 local abbreviation Gob := @functor_uncurry_ob definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p') : Gob G p ⟶ Gob G p' := to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2 local abbreviation Ghom := @functor_uncurry_hom theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id := calc Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp ... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id ... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id ... = id : id_id theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p') : Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f := calc Ghom G (f' ∘ f) = to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2) ∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _] ... = Ghom G f' ∘ Ghom G f : by esimp definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E := functor.mk (functor_uncurry_ob G) (functor_uncurry_hom G) (functor_uncurry_id G) (functor_uncurry_comp G) theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F := functor_eq (λp, ap (to_fun_ob F) !prod.eta) begin intro cd cd' fg, cases cd with c d, cases cd' with c' d', cases fg with f g, transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g), apply id_leftright, show (functor_uncurry (functor_curry F)) (f, g) = F (f,g), from calc (functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp ... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)] ... = F (f, g ∘ id) : by rewrite id_left ... = F (f,g) : by rewrite id_right, end definition functor_curry_functor_uncurry_ob (c : C) : functor_curry (functor_uncurry G) c = G c := begin fapply functor_eq, {intro d, reflexivity}, {intro d d' g, apply concat, apply id_leftright, show to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g, from calc to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp ... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d : by rewrite respect_id ... = to_fun_hom (G c) g ∘ id : by reflexivity ... = to_fun_hom (G c) g : by rewrite id_right} end theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G := begin fapply functor_eq, exact (functor_curry_functor_uncurry_ob G), intro c c' f, fapply nat_trans_eq, intro d, apply concat, {apply (ap (λx, x ∘ _)), apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq}, apply concat, {apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)), apply concat, apply natural_map_inv_of_eq, apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq}, apply concat, apply id_leftright, apply concat, apply (ap (λx, x ∘ _)), apply respect_id, apply id_left end definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory) : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) := equiv.MK functor_curry functor_uncurry functor_curry_functor_uncurry functor_uncurry_functor_curry definition functor_prod_flip [constructor] (C D : Precategory) : C ×c D ⇒ D ×c C := functor.mk (λp, (p.2, p.1)) (λp p' h, (h.2, h.1)) (λp, idp) (λp p' p'' h' h, idp) definition functor_prod_flip_functor_prod_flip (C D : Precategory) : functor_prod_flip D C ∘f (functor_prod_flip C D) = functor.id := begin fapply functor_eq, {intro p, apply prod.eta}, intro p p' h, cases p with c d, cases p' with c' d', apply id_leftright, end end functor open functor namespace yoneda open category.set nat_trans lift /- These attributes make sure that the fields of the category "set" reduce to the right things However, we don't want to have them globally, because that will unfold the composition g ∘ f in a Category to category.category.comp g f -/ local attribute Category.to.precategory category.to_precategory [constructor] -- should this be defined as "yoneda_embedding Cᵒᵖ"? definition contravariant_yoneda_embedding [reducible] (C : Precategory) : Cᵒᵖ ⇒ set ^c C := functor_curry !hom_functor definition yoneda_embedding (C : Precategory) : C ⇒ set ^c Cᵒᵖ := functor_curry (!hom_functor ∘f !functor_prod_flip) notation `ɏ` := yoneda_embedding _ definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ set) (x : trunctype.carrier (F c)) : ɏ c ⟹ F := begin fapply nat_trans.mk, { intro c', esimp [yoneda_embedding], intro f, exact F f x}, { intro c' c'' f, esimp [yoneda_embedding], apply eq_of_homotopy, intro f', refine _ ⬝ ap (λy, to_fun_hom F y x) !(@id_left _ C)⁻¹, exact ap10 !(@respect_comp Cᵒᵖ set)⁻¹ x} end definition yoneda_lemma_equiv [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ set) : hom (ɏ c) F ≃ lift (F c) := begin fapply equiv.MK, { intro η, exact up (η c id)}, { intro x, induction x with x, exact yoneda_lemma_hom c F x}, { exact abstract begin intro x, induction x with x, esimp, apply ap up, exact ap10 !respect_id x end end}, { exact abstract begin intro η, esimp, apply nat_trans_eq, intro c', esimp, apply eq_of_homotopy, intro f, esimp [yoneda_embedding] at f, transitivity (F f ∘ η c) id, reflexivity, rewrite naturality, esimp [yoneda_embedding], rewrite [id_left], apply ap _ !id_left end end}, end definition yoneda_lemma {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ set) : homset (ɏ c) F ≅ lift_functor (F c) := begin apply iso_of_equiv, esimp, apply yoneda_lemma_equiv, end theorem yoneda_lemma_natural_ob {C : Precategory} (F : Cᵒᵖ ⇒ set) {c c' : C} (f : c' ⟶ c) (η : ɏ c ⟹ F) : to_fun_hom (lift_functor ∘f F) f (to_hom (yoneda_lemma c F) η) = to_hom (yoneda_lemma c' F) (η ∘n to_fun_hom ɏ f) := begin esimp [yoneda_lemma,yoneda_embedding], apply ap up, transitivity (F f ∘ η c) id, reflexivity, rewrite naturality, esimp [yoneda_embedding], apply ap (η c'), esimp [yoneda_embedding, Opposite], rewrite [+id_left,+id_right], end -- TODO: Investigate what is the bottleneck to type check the next theorem -- attribute yoneda_lemma lift_functor Precategory_hset precategory_hset homset -- yoneda_embedding nat_trans.compose functor_nat_trans_compose [reducible] -- attribute tlift functor.compose [reducible] theorem yoneda_lemma_natural_functor.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set) (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) : (lift_functor.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) = proof to_hom (yoneda_lemma c F') (θ ∘n η) qed := by reflexivity -- theorem xx.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set) -- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) : -- proof _ qed = -- to_hom (yoneda_lemma c F') (θ ∘n η) := -- by reflexivity -- theorem yy.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set) -- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) : -- (lift_functor.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) = -- proof _ qed := -- by reflexivity definition fully_faithful_yoneda_embedding [instance] (C : Precategory) : fully_faithful (ɏ : C ⇒ set ^c Cᵒᵖ) := begin intro c c', fapply is_equiv_of_equiv_of_homotopy, { symmetry, transitivity _, apply @equiv_of_iso (homset _ _), rexact yoneda_lemma c (ɏ c'), esimp [yoneda_embedding], exact !equiv_lift⁻¹ᵉ}, { intro f, apply nat_trans_eq, intro c, apply eq_of_homotopy, intro f', esimp [equiv.symm,equiv.trans], esimp [yoneda_lemma,yoneda_embedding,Opposite], rewrite [id_left,id_right]} end definition is_embedding_yoneda_embedding (C : Category) : is_embedding (ɏ : C → Cᵒᵖ ⇒ set) := begin intro c c', fapply is_equiv_of_equiv_of_homotopy, { exact !eq_equiv_iso ⬝e !iso_equiv_F_iso_F ⬝e !eq_equiv_iso⁻¹ᵉ}, { intro p, induction p, esimp [equiv.trans, equiv.symm], esimp [to_fun_iso], rewrite -eq_of_iso_refl, apply ap eq_of_iso, apply iso_eq, esimp, apply nat_trans_eq, intro c', apply eq_of_homotopy, esimp [yoneda_embedding], intro f, rewrite [category.category.id_left], apply id_right} end definition is_representable {C : Precategory} (F : Cᵒᵖ ⇒ set) := Σ(c : C), ɏ c ≅ F definition is_hprop_representable {C : Category} (F : Cᵒᵖ ⇒ set) : is_hprop (is_representable F) := begin fapply is_trunc_equiv_closed, { transitivity _, rotate 1, { apply sigma.sigma_equiv_sigma_id, intro c, exact !eq_equiv_iso}, { apply fiber.sigma_char}}, { apply function.is_hprop_fiber_of_is_embedding, apply is_embedding_yoneda_embedding} end end yoneda