/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Various types of orders. We develop weak orders "≤" and strict orders "<" separately. We also consider structures with both, where the two are related by x < y ↔ (x ≤ y × x ≠ y) (order_pair) x ≤ y ↔ (x < y ⊎ x = y) (strong_order_pair) These might not hold constructively in some applications, but we can define additional structures with both < and ≤ as needed. Ported from the standard library -/ --import logic.eq logic.connectives open core prod namespace algebra variable {A : Type} /- overloaded symbols -/ structure has_le.{l} [class] (A : Type.{l}) : Type.{l+1} := (le : A → A → Type.{l}) structure has_lt [class] (A : Type) := (lt : A → A → Type₀) infixl <= := has_le.le infixl ≤ := has_le.le infixl < := has_lt.lt definition has_le.ge [reducible] {A : Type} [s : has_le A] (a b : A) := b ≤ a notation a ≥ b := has_le.ge a b notation a >= b := has_le.ge a b definition has_lt.gt [reducible] {A : Type} [s : has_lt A] (a b : A) := b < a notation a > b := has_lt.gt a b /- weak orders -/ structure weak_order [class] (A : Type) extends has_le A := (le_refl : Πa, le a a) (le_trans : Πa b c, le a b → le b c → le a c) (le_antisymm : Πa b, le a b → le b a → a = b) section variable [s : weak_order A] include s definition le.refl (a : A) : a ≤ a := !weak_order.le_refl definition le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans definition ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1 definition le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm end structure linear_weak_order [class] (A : Type) extends weak_order A : Type := (le_total : Πa b, le a b ⊎ le b a) definition le.total [s : linear_weak_order A] (a b : A) : a ≤ b ⊎ b ≤ a := !linear_weak_order.le_total /- strict orders -/ structure strict_order [class] (A : Type) extends has_lt A := (lt_irrefl : Πa, ¬ lt a a) (lt_trans : Πa b c, lt a b → lt b c → lt a c) section variable [s : strict_order A] include s definition lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl definition lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans definition gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1 definition ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b := assume eq_ab : a = b, show empty, from lt.irrefl b (eq_ab ▸ lt_ab) definition ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b := ne.symm (ne_of_lt gt_ab) definition lt.asymm {a b : A} (H : a < b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt.trans H H1) end /- well-founded orders -/ -- TODO: do these duplicate what Leo has done? if so, eliminate structure wf_strict_order [class] (A : Type) extends strict_order A := (wf_rec : ΠP : A → Type, (Πx, (Πy, lt y x → P y) → P x) → Πx, P x) definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type} (x : A) (H : Πx, (Πy, wf_strict_order.lt y x → P y) → P x) : P x := wf_strict_order.wf_rec P H x definition wf.ind_on := @wf.rec_on /- structures with a weak and a strict order -/ structure order_pair [class] (A : Type) extends weak_order A, has_lt A := (lt_iff_le_and_ne : Πa b, lt a b ↔ (le a b × a ≠ b)) section variable [s : order_pair A] variables {a b c : A} include s definition lt_iff_le_and_ne : a < b ↔ (a ≤ b × a ≠ b) := !order_pair.lt_iff_le_and_ne definition le_of_lt (H : a < b) : a ≤ b := pr1 (iff.mp lt_iff_le_and_ne H) definition lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b := iff.mp (iff.symm lt_iff_le_and_ne) (pair H1 H2) private definition lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := assume H : a < a, have H1 : a ≠ a, from pr2 (iff.mp !lt_iff_le_and_ne H), H1 rfl private definition lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c := have le_ab : a ≤ b, from le_of_lt lt_ab, have le_bc : b ≤ c, from le_of_lt lt_bc, have le_ac : a ≤ c, from le.trans le_ab le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm le_ab le_ba, have ne_ab : a ≠ b, from pr2 (iff.mp lt_iff_le_and_ne lt_ab), ne_ab eq_ab, show a < c, from lt_of_le_of_ne le_ac ne_ac definition order_pair.to_strict_order [instance] [coercion] [reducible] : strict_order A := ⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄ definition lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm (le_of_lt lt_ab) le_ba, show empty, from ne_of_lt lt_ab eq_ab, show a < c, from lt_of_le_of_ne le_ac ne_ac definition lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le.antisymm (le_of_lt lt_bc) le_cb, show empty, from ne_of_lt lt_bc eq_bc, show a < c, from lt_of_le_of_ne le_ac ne_ac definition gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1 definition gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1 definition not_le_of_lt (H : a < b) : ¬ b ≤ a := assume H1 : b ≤ a, lt.irrefl _ (lt_of_lt_of_le H H1) definition not_lt_of_le (H : a ≤ b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt_of_le_of_lt H H1) end structure strong_order_pair [class] (A : Type) extends order_pair A := (le_iff_lt_or_eq : Πa b, le a b ↔ lt a b ⊎ a = b) definition le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ⊎ a = b := !strong_order_pair.le_iff_lt_or_eq definition lt_or_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ⊎ a = b := iff.mp le_iff_lt_or_eq le_ab -- We can also construct a strong order pair by defining a strict order, and then defining -- x ≤ y ↔ x < y ⊎ x = y structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A := (le_iff_lt_or_eq : Πa b, le a b ↔ lt a b ⊎ a = b) private definition le_refl (s : strict_order_with_le A) (a : A) : a ≤ a := iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (sum.inr rfl) private definition le_trans (s : strict_order_with_le A) (a b c : A) (le_ab : a ≤ b) (le_bc : b ≤ c) : a ≤ c := sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc) (assume lt_bc : b < c, iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (sum.inl (lt.trans lt_ab lt_bc))) (assume eq_bc : b = c, eq_bc ▸ le_ab)) (assume eq_ab : a = b, eq_ab⁻¹ ▸ le_bc) private definition le_antisymm (s : strict_order_with_le A) (a b : A) (le_ab : a ≤ b) (le_ba : b ≤ a) : a = b := sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba) (assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a)) (assume eq_ba : b = a, eq_ba⁻¹)) (assume eq_ab : a = b, eq_ab) private definition lt_iff_le_ne (s : strict_order_with_le A) (a b : A) : a < b ↔ a ≤ b × a ≠ b := iff.intro (assume lt_ab : a < b, have le_ab : a ≤ b, from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (sum.inl lt_ab), show a ≤ b × a ≠ b, from pair le_ab (ne_of_lt lt_ab)) (assume H : a ≤ b × a ≠ b, have H1 : a < b ⊎ a = b, from iff.mp !strict_order_with_le.le_iff_lt_or_eq (pr1 H), show a < b, from sum_resolve_left H1 (pr2 H)) definition strict_order_with_le.to_order_pair [instance] [coercion] [reducible] [s : strict_order_with_le A] : strong_order_pair A := ⦃ strong_order_pair, s, le_refl := le_refl s, le_trans := le_trans s, le_antisymm := le_antisymm s, lt_iff_le_and_ne := lt_iff_le_ne s ⦄ /- linear orders -/ structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A, linear_weak_order A section variable [s : linear_strong_order_pair A] variables (a b c : A) include s definition lt.trichotomy : a < b ⊎ a = b ⊎ b < a := sum.rec_on (le.total a b) (assume H : a ≤ b, sum.rec_on (iff.mp !le_iff_lt_or_eq H) (assume H1, sum.inl H1) (assume H1, sum.inr (sum.inl H1))) (assume H : b ≤ a, sum.rec_on (iff.mp !le_iff_lt_or_eq H) (assume H1, sum.inr (sum.inr H1)) (assume H1, sum.inr (sum.inl (H1⁻¹)))) definition lt.by_cases {a b : A} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := sum.rec_on !lt.trichotomy (assume H, H1 H) (assume H, sum.rec_on H (assume H', H2 H') (assume H', H3 H')) definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion] [reducible] : linear_order_pair A := ⦃ linear_order_pair, s ⦄ definition le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a := lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H') definition lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a := lt.by_cases (assume H', absurd (le_of_lt H') H) (assume H', absurd (H' ▸ !le.refl) H) (assume H', H') definition lt_or_ge : a < b ⊎ a ≥ b := lt.by_cases (assume H1 : a < b, sum.inl H1) (assume H1 : a = b, sum.inr (H1 ▸ le.refl a)) (assume H1 : a > b, sum.inr (le_of_lt H1)) definition le_or_gt : a ≤ b ⊎ a > b := !sum.swap (lt_or_ge b a) definition lt_or_gt_of_ne {a b : A} (H : a ≠ b) : a < b ⊎ a > b := lt.by_cases (assume H1, sum.inl H1) (assume H1, absurd H1 H) (assume H1, sum.inr H1) end structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A := (decidable_lt : decidable_rel lt) section variable [s : decidable_linear_order A] variables {a b c d : A} include s open decidable definition decidable_lt [instance] : decidable (a < b) := @decidable_linear_order.decidable_lt _ _ _ _ definition decidable_le [instance] : decidable (a ≤ b) := by_cases (assume H : a < b, inl (le_of_lt H)) (assume H : ¬ a < b, have H1 : b ≤ a, from le_of_not_lt H, by_cases (assume H2 : b < a, inr (not_le_of_lt H2)) (assume H2 : ¬ b < a, inl (le_of_not_lt H2))) definition decidable_eq [instance] : decidable (a = b) := by_cases (assume H : a ≤ b, by_cases (assume H1 : b ≤ a, inl (le.antisymm H H1)) (assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a)))) (assume H : ¬ a ≤ b, (inr (assume H1 : a = b, H (H1 ▸ !le.refl)))) -- testing equality first may result in more definitional equalities definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B := if a = b then t_eq else (if a < b then t_lt else t_gt) definition lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) : lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H definition lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) : lt.cases a b t_lt t_eq t_gt = t_lt := if_neg (ne_of_lt H) ⬝ if_pos H definition lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) : lt.cases a b t_lt t_eq t_gt = t_gt := if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H) end end algebra /- For reference, these are all the transitivity rules defined in this file: calc_trans le.trans calc_trans lt.trans calc_trans lt_of_lt_of_le calc_trans lt_of_le_of_lt calc_trans ge.trans calc_trans gt.trans calc_trans gt_of_gt_of_ge calc_trans gt_of_ge_of_gt -/