/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import algebra.category.constructions function arity open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv namespace category variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} -- TODO: define a structure "adjoint" and then define -- structure is_left_adjoint (F : C ⇒ D) := -- (G : D ⇒ C) -- G -- (is_adjoint : adjoint F G) structure is_left_adjoint [class] (F : C ⇒ D) := (G : D ⇒ C) (η : 1 ⟹ G ∘f F) (ε : F ∘f G ⟹ 1) (H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c)) (K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d)) abbreviation right_adjoint := @is_left_adjoint.G abbreviation unit := @is_left_adjoint.η abbreviation counit := @is_left_adjoint.ε structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F := mk' :: (is_iso_unit : is_iso η) (is_iso_counit : is_iso ε) abbreviation inverse := @is_equivalence.G postfix ⁻¹ := inverse --a second notation for the inverse, which is not overloaded postfix [parsing_only] `⁻¹F`:std.prec.max_plus := inverse --TODO: review and change definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f' definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c') definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c') definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F) structure equivalence (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_equivalence to_functor) structure isomorphism (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_isomorphism to_functor) -- infix `⊣`:55 := adjoint infix ` ⋍ `:25 := equivalence -- \backsimeq or \equiv infix ` ≌ `:25 := isomorphism -- \backcong or \iso definition is_equiv_of_fully_faithful [instance] [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : is_equiv (@(to_fun_hom F) c c') := !H definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (f : F c ⟶ F c') : c ⟶ c' := (to_fun_hom F)⁻¹ᶠ f definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') := equiv.mk _ !H definition iso_of_F_iso_F (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (g : F c ≅ F c') : c ≅ c' := begin induction g with g G, induction G with h p q, fapply iso.MK, { rexact (to_fun_hom F)⁻¹ᶠ g}, { rexact (to_fun_hom F)⁻¹ᶠ h}, { exact abstract begin apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp, respect_id, right_inv (to_fun_hom F), right_inv (to_fun_hom F), p], end end}, { exact abstract begin apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp, respect_id, right_inv (to_fun_hom F), right_inv (@(to_fun_hom F) c' c), q], end end} end definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') := begin fapply equiv.MK, { exact to_fun_iso F}, { apply iso_of_F_iso_F}, { exact abstract begin intro f, induction f with f F', induction F' with g p q, apply iso_eq, esimp [iso_of_F_iso_F], apply right_inv end end}, { exact abstract begin intro f, induction f with f F', induction F' with g p q, apply iso_eq, esimp [iso_of_F_iso_F], apply right_inv end end}, end definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) := !is_equivalence.is_iso_unit definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) := !is_equivalence.is_iso_counit theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_left_adjoint F) := begin apply is_hprop.mk, intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K', assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε' → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K', { intros p q r, induction p, induction q, induction r, esimp, apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim}, assert lem₂ : Π (d : carrier D), (to_fun_hom G (natural_map ε' d) ∘ natural_map η (to_fun_ob G' d)) ∘ to_fun_hom G' (natural_map ε d) ∘ natural_map η' (to_fun_ob G d) = id, { intro d, esimp, rewrite [assoc], rewrite [-assoc (G (ε' d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d], esimp, rewrite [assoc], esimp, rewrite [-assoc], rewrite [↑functor.compose, -respect_comp G], rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*], rewrite [respect_comp G], rewrite [assoc,▸*,-assoc (G (ε d))], rewrite [↑functor.compose, -respect_comp G], rewrite [H' (G d)], rewrite [respect_id,▸*,id_right], apply K}, assert lem₃ : Π (d : carrier D), (to_fun_hom G' (natural_map ε d) ∘ natural_map η' (to_fun_ob G d)) ∘ to_fun_hom G (natural_map ε' d) ∘ natural_map η (to_fun_ob G' d) = id, { intro d, esimp, rewrite [assoc, -assoc (G' (ε d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d], esimp, rewrite [assoc], esimp, rewrite [-assoc], rewrite [↑functor.compose, -respect_comp G'], rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)], esimp, rewrite [respect_comp G'], rewrite [assoc,▸*,-assoc (G' (ε' d))], rewrite [↑functor.compose, -respect_comp G'], rewrite [H (G' d)], rewrite [respect_id,▸*,id_right], apply K'}, fapply lem₁, { fapply functor.eq_of_pointwise_iso, { fapply change_natural_map, { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)}, { intro d, exact (G' (ε d) ∘ η' (G d))}, { intro d, exact ap (λx, _ ∘ x) !id_left}}, { intro d, fconstructor, { exact (G (ε' d) ∘ η (G' d))}, { exact lem₂ d }, { exact lem₃ d }}}, { clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _, krewrite hom_of_eq_compose_right, rewrite functor.hom_of_eq_eq_of_pointwise_iso, apply nat_trans_eq, intro c, esimp, refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _, esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]}, { clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _, krewrite inv_of_eq_compose_left, rewrite functor.inv_of_eq_eq_of_pointwise_iso, apply nat_trans_eq, intro d, esimp, krewrite [respect_comp], rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]} end definition full_of_fully_faithful (H : fully_faithful F) : full F := λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv) definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F := λc c' f f' p, is_injective_of_is_embedding p definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F := begin intro c c', apply is_equiv_of_is_surjective_of_is_embedding, { apply is_embedding_of_is_injective, intros f f' p, exact H p}, { apply K} end definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : split_essentially_surjective F := begin intro d, fconstructor, { exact F⁻¹ d}, { exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d} end definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c') [H : is_iso (F f)] : is_iso f := begin fconstructor, { exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹}, { apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]}, { apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]}, end definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : F c ≅ F c') : c ≅ c' := begin fconstructor, { exact (to_fun_hom F)⁻¹ᶠ f}, { assert H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)), { have H' : is_iso (to_hom f), from _, exact (right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H'}, exact reflect_is_iso F _}, end theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c') [H : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ := inverse_eq_inverse (idp : to_hom (@(iso.mk f) (reflect_is_iso F f)) = f) /- section variables (η : Πc, G (F c) ≅ c) (ε : Πd, F (G d) ≅ d) -- we need some kind of naturality include η ε --definition inverse_of_unit_counit private definition adj_η (c : C) : G (F c) ≅ c := to_fun_iso G (to_fun_iso F (η c)⁻¹ⁱ) ⬝i to_fun_iso G (ε (F c)) ⬝i η c open iso private theorem adjointify_adjH (c : C) : to_hom (ε (F c)) ∘ F (to_hom (adj_η η ε c)⁻¹ⁱ) = id := begin exact sorry end private theorem adjointify_adjK (d : D) : G (to_hom (ε d)) ∘ to_hom (adj_η η ε (G d))⁻¹ⁱ = id := begin exact sorry end variables (F G) definition is_equivalence.mk : is_equivalence F := begin fconstructor, { exact G}, { } end end definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : fully_faithful F := begin intro c c', fapply adjointify, { intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c}, { intro g, rewrite [+respect_comp,▸*], krewrite [natural_map_inverse], xrewrite [respect_inv'], apply inverse_comp_eq_of_eq_comp, exact sorry /-this is basically the naturality of the counit-/ }, { exact sorry}, end definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) := sorry definition is_equivalence_equiv (F : C ⇒ D) : is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) := sorry definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) := sorry definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) := sorry definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F := sorry definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) := sorry definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F ≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1), sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ := sorry definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F ≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 := sorry definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F := sorry definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F) : is_isomorphism F := sorry definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D := sorry definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) := sorry definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D := sorry definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) := sorry -/ end category