/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import init.relation init.tactic inductive acc {A : Type} (R : A → A → Prop) : A → Prop := intro : ∀x, (∀ y, R y x → acc R y) → acc R x namespace acc variables {A : Type} {R : A → A → Prop} definition inv {x y : A} (H₁ : acc R x) (H₂ : R y x) : acc R y := acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂) H₂ -- dependent elimination for acc protected definition drec [recursor] {C : Π (a : A), acc R a → Type} (h₁ : Π (x : A) (acx : Π (y : A), R y x → acc R y), (Π (y : A) (ryx : R y x), C y (acx y ryx)) → C x (acc.intro x acx)) {a : A} (h₂ : acc R a) : C a h₂ := begin refine acc.rec _ h₂ h₂, intro x acx ih h₂, exact h₁ x acx (λ y ryx, ih y ryx (acx y ryx)) end end acc inductive well_founded [class] {A : Type} (R : A → A → Prop) : Prop := intro : (∀ a, acc R a) → well_founded R namespace well_founded definition apply [coercion] {A : Type} {R : A → A → Prop} (wf : well_founded R) : ∀a, acc R a := take a, well_founded.rec_on wf (λp, p) a section parameters {A : Type} {R : A → A → Prop} local infix `≺`:50 := R hypothesis [Hwf : well_founded R] theorem recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a := acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH) theorem induction {C : A → Prop} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a := recursion a H variable {C : A → Type} variable F : Πx, (Πy, y ≺ x → C y) → C x definition fix_F (x : A) (a : acc R x) : C x := acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH) theorem fix_F_eq (x : A) (r : acc R x) : fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc.inv r p)) := begin induction r using acc.drec, reflexivity -- proof is trivial due to proof irrelevance end end variables {A : Type} {C : A → Type} {R : A → A → Prop} -- Well-founded fixpoint definition fix [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) : C x := fix_F F x (Hwf x) -- Well-founded fixpoint satisfies fixpoint equation theorem fix_eq [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) : fix F x = F x (λy h, fix F y) := fix_F_eq F x (Hwf x) end well_founded open well_founded -- Empty relation is well-founded definition empty.wf {A : Type} : well_founded empty_relation := well_founded.intro (λ (a : A), acc.intro a (λ (b : A) (lt : false), false.rec _ lt)) -- Subrelation of a well-founded relation is well-founded namespace subrelation section parameters {A : Type} {R Q : A → A → Prop} parameters (H₁ : subrelation Q R) parameters (H₂ : well_founded R) definition accessible {a : A} (ac : acc R a) : acc Q a := using H₁, begin induction ac with x ax ih, constructor, exact λ (y : A) (lt : Q y x), ih y (H₁ lt) end definition wf : well_founded Q := well_founded.intro (λ a, accessible (H₂ a)) end end subrelation -- The inverse image of a well-founded relation is well-founded namespace inv_image section parameters {A B : Type} {R : B → B → Prop} parameters (f : A → B) parameters (H : well_founded R) private definition acc_aux {b : B} (ac : acc R b) : ∀ x, f x = b → acc (inv_image R f) x := begin induction ac with x acx ih, intro z e, constructor, intro y lt, subst x, exact ih (f y) lt y rfl end definition accessible {a : A} (ac : acc R (f a)) : acc (inv_image R f) a := acc_aux ac a rfl definition wf : well_founded (inv_image R f) := well_founded.intro (λ a, accessible (H (f a))) end end inv_image -- The transitive closure of a well-founded relation is well-founded namespace tc section parameters {A : Type} {R : A → A → Prop} local notation `R⁺` := tc R definition accessible {z} (ac: acc R z) : acc R⁺ z := begin induction ac with x acx ih, constructor, intro y rel, induction rel with a b rab a b c rab rbc ih₁ ih₂, {exact ih a rab}, {exact acc.inv (ih₂ acx ih) rab} end definition wf (H : well_founded R) : well_founded R⁺ := well_founded.intro (λ a, accessible (H a)) end end tc