/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.set Author: Jeremy Avigad, Leonardo de Moura -/ import logic open eq.ops namespace set definition set (T : Type) := T → Prop definition mem [reducible] {T : Type} (x : T) (s : set T) := s x notation e ∈ s := mem e s variable {T : Type} definition eqv (A B : set T) : Prop := ∀x, x ∈ A ↔ x ∈ B notation a ∼ b := eqv a b theorem eqv_refl (A : set T) : A ∼ A := take x, iff.rfl theorem eqv_symm {A B : set T} (H : A ∼ B) : B ∼ A := take x, iff.symm (H x) theorem eqv_trans {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C := take x, iff.trans (H1 x) (H2 x) definition empty [reducible] : set T := λx, false notation `∅` := empty theorem mem_empty (x : T) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H definition univ : set T := λx, true theorem mem_univ (x : T) : x ∈ univ := trivial definition inter [reducible] (A B : set T) : set T := λx, x ∈ A ∧ x ∈ B notation a ∩ b := inter a b theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := !iff.refl theorem inter_id (A : set T) : A ∩ A ∼ A := take x, iff.intro (assume H, and.elim_left H) (assume H, and.intro H H) theorem inter_empty_right (A : set T) : A ∩ ∅ ∼ ∅ := take x, iff.intro (assume H, and.elim_right H) (assume H, false.elim H) theorem inter_empty_left (A : set T) : ∅ ∩ A ∼ ∅ := take x, iff.intro (assume H, and.elim_left H) (assume H, false.elim H) theorem inter_comm (A B : set T) : A ∩ B ∼ B ∩ A := take x, !and.comm theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) := take x, !and.assoc definition union [reducible] (A B : set T) : set T := λx, x ∈ A ∨ x ∈ B notation a ∪ b := union a b theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) := !iff.refl theorem union_id (A : set T) : A ∪ A ∼ A := take x, iff.intro (assume H, match H with | or.inl H₁ := H₁ | or.inr H₂ := H₂ end) (assume H, or.inl H) theorem union_empty_right (A : set T) : A ∪ ∅ ∼ A := take x, iff.intro (assume H, match H with | or.inl H₁ := H₁ | or.inr H₂ := false.elim H₂ end) (assume H, or.inl H) theorem union_empty_left (A : set T) : ∅ ∪ A ∼ A := take x, iff.intro (assume H, match H with | or.inl H₁ := false.elim H₁ | or.inr H₂ := H₂ end) (assume H, or.inr H) theorem union_comm (A B : set T) : A ∪ B ∼ B ∪ A := take x, or.comm theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) := take x, or.assoc definition subset (A B : set T) := ∀ x, x ∈ A → x ∈ B infix `⊆`:50 := subset definition eqv_of_subset (A B : set T) : A ⊆ B → B ⊆ A → A ∼ B := assume H₁ H₂, take x, iff.intro (H₁ x) (H₂ x) end set