/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.fin Author: Leonardo de Moura Finite ordinals. -/ open nat inductive fin : nat → Type := fz : Π n, fin (succ n), fs : Π {n}, fin n → fin (succ n) namespace fin definition to_nat : Π {n}, fin n → nat, @to_nat (succ n) (fz n) := zero, @to_nat (succ n) (fs f) := succ (@to_nat n f) definition lift : Π {n : nat}, fin n → Π (m : nat), fin (add m n), @lift (succ n) (fz n) m := fz (add m n), @lift (succ n) (@fs n f) m := fs (@lift n f m) theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m), to_nat_lift (fz n) m := rfl, to_nat_lift (@fs n f) m := calc to_nat (fs f) = (to_nat f) + 1 : rfl ... = (to_nat (lift f m)) + 1 : to_nat_lift f ... = to_nat (lift (fs f) m) : rfl end fin