/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Haitao Zhang -/ import algebra.group data data.fintype.function open nat list function namespace group_theory open fintype section perm variable {A : Type} variable [finA : fintype A] include finA variable [deceqA : decidable_eq A] include deceqA variable {f : A → A} lemma perm_surj : injective f → surjective f := surj_of_inj_eq_card (eq.refl (card A)) variable (perm : injective f) definition perm_inv : A → A := right_inv (perm_surj perm) lemma perm_inv_right : f ∘ (perm_inv perm) = id := right_inv_of_surj (perm_surj perm) lemma perm_inv_left : (perm_inv perm) ∘ f = id := have H : left_inverse f (perm_inv perm), from congr_fun (perm_inv_right perm), funext (take x, right_inverse_of_injective_of_left_inverse perm H x) lemma perm_inv_inj : injective (perm_inv perm) := injective_of_has_left_inverse (exists.intro f (congr_fun (perm_inv_right perm))) end perm structure perm (A : Type) [h : fintype A] : Type := (f : A → A) (inj : injective f) local attribute perm.f [coercion] section perm variable {A : Type} variable [finA : fintype A] include finA lemma eq_of_feq : ∀ {p₁ p₂ : perm A}, (perm.f p₁) = p₂ → p₁ = p₂ | (perm.mk f₁ P₁) (perm.mk f₂ P₂) := assume (feq : f₁ = f₂), by congruence; assumption lemma feq_of_eq : ∀ {p₁ p₂ : perm A}, p₁ = p₂ → (perm.f p₁) = p₂ | (perm.mk f₁ P₁) (perm.mk f₂ P₂) := assume Peq, have feq : f₁ = f₂, from perm.no_confusion Peq (λ Pe Pqe, Pe), feq lemma eq_iff_feq {p₁ p₂ : perm A} : (perm.f p₁) = p₂ ↔ p₁ = p₂ := iff.intro eq_of_feq feq_of_eq lemma perm.f_mk {f : A → A} {Pinj : injective f} : perm.f (perm.mk f Pinj) = f := rfl definition move_by [reducible] (a : A) (f : perm A) : A := f a variable [deceqA : decidable_eq A] include deceqA lemma perm.has_decidable_eq [instance] : decidable_eq (perm A) := take f g, perm.destruct f (λ ff finj, perm.destruct g (λ gf ginj, decidable.rec_on (decidable_eq_fun ff gf) (λ Peq, decidable.inl (by substvars)) (λ Pne, decidable.inr begin intro P, injection P, contradiction end))) lemma dinj_perm_mk : dinj (@injective A A) perm.mk := take a₁ a₂ Pa₁ Pa₂ Pmkeq, perm.no_confusion Pmkeq (λ Pe Pqe, Pe) definition all_perms : list (perm A) := dmap injective perm.mk (all_injs A) lemma nodup_all_perms : nodup (@all_perms A _ _) := dmap_nodup_of_dinj dinj_perm_mk nodup_all_injs lemma all_perms_complete : ∀ p : perm A, p ∈ all_perms := take p, perm.destruct p (take f Pinj, assert Pin : f ∈ all_injs A, from all_injs_complete Pinj, mem_dmap Pinj Pin) definition perm_is_fintype [instance] : fintype (perm A) := fintype.mk all_perms nodup_all_perms all_perms_complete definition perm.mul (f g : perm A) := perm.mk (f∘g) (injective_compose (perm.inj f) (perm.inj g)) definition perm.one [reducible] : perm A := perm.mk id injective_id definition perm.inv (f : perm A) := let inj := perm.inj f in perm.mk (perm_inv inj) (perm_inv_inj inj) local infix `^` := perm.mul lemma perm.assoc (f g h : perm A) : f ^ g ^ h = f ^ (g ^ h) := rfl lemma perm.one_mul (p : perm A) : perm.one ^ p = p := perm.cases_on p (λ f inj, rfl) lemma perm.mul_one (p : perm A) : p ^ perm.one = p := perm.cases_on p (λ f inj, rfl) lemma perm.left_inv (p : perm A) : (perm.inv p) ^ p = perm.one := begin rewrite [↑perm.one], generalize @injective_id A, rewrite [-perm_inv_left (perm.inj p)], intros, exact rfl end lemma perm.right_inv (p : perm A) : p ^ (perm.inv p) = perm.one := begin rewrite [↑perm.one], generalize @injective_id A, rewrite [-perm_inv_right (perm.inj p)], intros, exact rfl end definition perm_group [instance] : group (perm A) := group.mk perm.mul perm.assoc perm.one perm.one_mul perm.mul_one perm.inv perm.left_inv lemma perm_one : (1 : perm A) = perm.one := rfl end perm end group_theory