/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Definitions and properties of div and mod, following the SSReflect library. Following SSReflect and the SMTlib standard, we define a mod b so that 0 ≤ a mod b < |b| when b ≠ 0. -/ import data.int.order data.nat.div open [coercions] [reduce-hints] nat open [declarations] nat (succ) open eq.ops notation `ℕ` := nat namespace int /- definitions -/ definition divide (a b : ℤ) : ℤ := sign b * (match a with | of_nat m := #nat m div (nat_abs b) | -[1+m] := -[1+ (#nat m div (nat_abs b))] end) notation [priority int.prio] a div b := divide a b definition modulo (a b : ℤ) : ℤ := a - a div b * b notation [priority int.prio] a mod b := modulo a b notation [priority int.prio] a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c /- div -/ theorem of_nat_div (m n : nat) : of_nat (#nat m div n) = m div n := nat.cases_on n (by rewrite [↑divide, sign_zero, zero_mul, nat.div_zero]) (take n, by rewrite [↑divide, sign_of_succ, one_mul]) theorem neg_succ_of_nat_div (m : nat) {b : ℤ} (H : b > 0) : -[1+m] div b = -(m div b + 1) := calc -[1+m] div b = sign b * _ : rfl ... = -[1+(#nat m div (nat_abs b))] : by rewrite [sign_of_pos H, one_mul] ... = -(m div b + 1) : by rewrite [↑divide, sign_of_pos H, one_mul] theorem div_neg (a b : ℤ) : a div -b = -(a div b) := by rewrite [↑divide, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg] theorem div_of_neg_of_pos {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a div b = -((-a - 1) div b + 1) := obtain m (H1 : a = -[1+m]), from exists_eq_neg_succ_of_nat Ha, calc a div b = -(m div b + 1) : by rewrite [H1, neg_succ_of_nat_div _ Hb] ... = -((-a -1) div b + 1) : by rewrite [H1, neg_succ_of_nat_eq', neg_sub, sub_neg_eq_add, add.comm 1, add_sub_cancel] theorem div_nonneg {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) : a div b ≥ 0 := obtain (m : ℕ) (Hm : a = m), from exists_eq_of_nat Ha, obtain (n : ℕ) (Hn : b = n), from exists_eq_of_nat Hb, calc a div b = (#nat m div n) : by rewrite [Hm, Hn, of_nat_div] ... ≥ 0 : begin change (0 ≤ #nat m div n), apply trivial end theorem div_nonpos {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≤ 0) : a div b ≤ 0 := calc a div b = -(a div -b) : by rewrite [div_neg, neg_neg] ... ≤ 0 : neg_nonpos_of_nonneg (div_nonneg Ha (neg_nonneg_of_nonpos Hb)) theorem div_neg' {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a div b < 0 := have H1 : -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg Ha), have H2 : (-a - 1) div b + 1 > 0, from lt_add_one_of_le (div_nonneg H1 (le_of_lt Hb)), calc a div b = -((-a - 1) div b + 1) : div_of_neg_of_pos Ha Hb ... < 0 : neg_neg_of_pos H2 theorem zero_div (b : ℤ) : 0 div b = 0 := calc 0 div b = sign b * (#nat 0 div (nat_abs b)) : rfl ... = sign b * 0 : nat.zero_div ... = 0 : mul_zero theorem div_zero (a : ℤ) : a div 0 = 0 := by rewrite [↑divide, sign_zero, zero_mul] theorem div_one (a : ℤ) :a div 1 = a := assert H : 1 > 0, from dec_trivial, int.cases_on a (take m, by rewrite [-of_nat_div, nat.div_one]) (take m, by rewrite [!neg_succ_of_nat_div H, -of_nat_div, nat.div_one]) theorem eq_div_mul_add_mod (a b : ℤ) : a = a div b * b + a mod b := !add.comm ▸ eq_add_of_sub_eq rfl theorem div_eq_zero_of_lt {a b : ℤ} : 0 ≤ a → a < b → a div b = 0 := int.cases_on a (take m, assume H, int.cases_on b (take n, assume H : m < n, calc m div n = #nat m div n : of_nat_div ... = 0 : nat.div_eq_zero_of_lt (lt_of_of_nat_lt_of_nat H)) (take n, assume H : m < -[1+n], have H1 : ¬(m < -[1+n]), from dec_trivial, absurd H H1)) (take m, assume H : 0 ≤ -[1+m], have H1 : ¬ (0 ≤ -[1+m]), from dec_trivial, absurd H H1) theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a div b = 0 := lt.by_cases (assume H : b < 0, assert H3 : a < -b, from abs_of_neg H ▸ H2, calc a div b = - (a div -b) : by rewrite [div_neg, neg_neg] ... = 0 : by rewrite [div_eq_zero_of_lt H1 H3, neg_zero]) (assume H : b = 0, H⁻¹ ▸ !div_zero) (assume H : b > 0, have H3 : a < b, from abs_of_pos H ▸ H2, div_eq_zero_of_lt H1 H3) private theorem add_mul_div_self_aux1 {a : ℤ} {k : ℕ} (n : ℕ) (H1 : a ≥ 0) (H2 : #nat k > 0) : (a + n * k) div k = a div k + n := obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1, Hm⁻¹ ▸ (calc (m + n * k) div k = (#nat (m + n * k)) div k : rfl ... = (#nat (m + n * k) div k) : of_nat_div ... = (#nat m div k + n) : !nat.add_mul_div_self H2 ... = (#nat m div k) + n : rfl ... = m div k + n : of_nat_div) private theorem add_mul_div_self_aux2 {a : ℤ} {k : ℕ} (n : ℕ) (H1 : a < 0) (H2 : #nat k > 0) : (a + n * k) div k = a div k + n := obtain m (Hm : a = -[1+m]), from exists_eq_neg_succ_of_nat H1, or.elim (nat.lt_or_ge m (#nat n * k)) (assume m_lt_nk : #nat m < n * k, have H3 : #nat (m + 1 ≤ n * k), from nat.succ_le_of_lt m_lt_nk, have H4 : #nat m div k + 1 ≤ n, from nat.succ_le_of_lt (nat.div_lt_of_lt_mul m_lt_nk), Hm⁻¹ ▸ (calc (-[1+m] + n * k) div k = (n * k - (m + 1)) div k : by rewrite [add.comm, neg_succ_of_nat_eq] ... = ((#nat n * k) - (#nat m + 1)) div k : rfl ... = (#nat n * k - (m + 1)) div k : {(of_nat_sub H3)⁻¹} ... = #nat (n * k - (m + 1)) div k : of_nat_div ... = #nat (k * n - (m + 1)) div k : nat.mul.comm ... = #nat n - m div k - 1 : nat.mul_sub_div_of_lt (!nat.mul.comm ▸ m_lt_nk) ... = #nat n - (m div k + 1) : nat.sub_sub ... = n - (#nat m div k + 1) : of_nat_sub H4 ... = -(m div k + 1) + n : by rewrite [add.comm, -sub_eq_add_neg, of_nat_add, of_nat_div] ... = -[1+m] div k + n : neg_succ_of_nat_div m (of_nat_lt_of_nat_of_lt H2))) (assume nk_le_m : #nat n * k ≤ m, eq.symm (Hm⁻¹ ▸ (calc -[1+m] div k + n = -(m div k + 1) + n : neg_succ_of_nat_div m (of_nat_lt_of_nat_of_lt H2) ... = -((#nat m div k) + 1) + n : of_nat_div ... = -((#nat (m - n * k + n * k) div k) + 1) + n : nat.sub_add_cancel nk_le_m ... = -((#nat (m - n * k) div k + n) + 1) + n : nat.add_mul_div_self H2 ... = -((#nat m - n * k) div k + 1) : by rewrite [of_nat_add, *neg_add, add.right_comm, neg_add_cancel_right, of_nat_div] ... = -[1+(#nat m - n * k)] div k : neg_succ_of_nat_div _ (of_nat_lt_of_nat_of_lt H2) ... = -((#nat m - n * k) + 1) div k : rfl ... = -(m - (#nat n * k) + 1) div k : of_nat_sub nk_le_m ... = (-(m + 1) + n * k) div k : by rewrite [sub_eq_add_neg, -*add.assoc, *neg_add, neg_neg, add.right_comm] ... = (-[1+m] + n * k) div k : rfl))) private theorem add_mul_div_self_aux3 (a : ℤ) {b c : ℤ} (H1 : b ≥ 0) (H2 : c > 0) : (a + b * c) div c = a div c + b := obtain n (Hn : b = of_nat n), from exists_eq_of_nat H1, obtain k (Hk : c = of_nat k), from exists_eq_of_nat (le_of_lt H2), have knz : k ≠ 0, from assume kz, !lt.irrefl (kz ▸ Hk ▸ H2), have kgt0 : (#nat k > 0), from nat.pos_of_ne_zero knz, have H3 : (a + n * k) div k = a div k + n, from or.elim (lt_or_ge a 0) (assume Ha : a < 0, add_mul_div_self_aux2 _ Ha kgt0) (assume Ha : a ≥ 0, add_mul_div_self_aux1 _ Ha kgt0), Hn⁻¹ ▸ Hk⁻¹ ▸ H3 private theorem add_mul_div_self_aux4 (a b : ℤ) {c : ℤ} (H : c > 0) : (a + b * c) div c = a div c + b := or.elim (le.total 0 b) (assume H1 : 0 ≤ b, add_mul_div_self_aux3 _ H1 H) (assume H1 : 0 ≥ b, eq.symm (calc a div c + b = (a + b * c + -b * c) div c + b : by rewrite [-neg_mul_eq_neg_mul, add_neg_cancel_right] ... = (a + b * c) div c + - b + b : add_mul_div_self_aux3 _ (neg_nonneg_of_nonpos H1) H ... = (a + b * c) div c : neg_add_cancel_right)) theorem add_mul_div_self (a b : ℤ) {c : ℤ} (H : c ≠ 0) : (a + b * c) div c = a div c + b := lt.by_cases (assume H1 : 0 < c, !add_mul_div_self_aux4 H1) (assume H1 : 0 = c, absurd H1⁻¹ H) (assume H1 : 0 > c, have H2 : -c > 0, from neg_pos_of_neg H1, calc (a + b * c) div c = - ((a + -b * -c) div -c) : by rewrite [div_neg, neg_mul_neg, neg_neg] ... = -(a div -c + -b) : !add_mul_div_self_aux4 H2 ... = a div c + b : by rewrite [div_neg, neg_add, *neg_neg]) theorem add_mul_div_self_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b ≠ 0) : (a + b * c) div b = a div b + c := !mul.comm ▸ !add_mul_div_self H theorem mul_div_cancel (a : ℤ) {b : ℤ} (H : b ≠ 0) : a * b div b = a := calc a * b div b = (0 + a * b) div b : zero_add ... = 0 div b + a : !add_mul_div_self H ... = a : by rewrite [zero_div, zero_add] theorem mul_div_cancel_left {a : ℤ} (b : ℤ) (H : a ≠ 0) : a * b div a = b := !mul.comm ▸ mul_div_cancel b H theorem div_self {a : ℤ} (H : a ≠ 0) : a div a = 1 := !mul_one ▸ !mul_div_cancel_left H /- mod -/ theorem of_nat_mod (m n : nat) : m mod n = (#nat m mod n) := have H : m = (#nat m mod n) + m div n * n, from calc m = of_nat (#nat m div n * n + m mod n) : nat.eq_div_mul_add_mod ... = (#nat m div n) * n + (#nat m mod n) : rfl ... = m div n * n + (#nat m mod n) : of_nat_div ... = (#nat m mod n) + m div n * n : add.comm, calc m mod n = m - m div n * n : rfl ... = (#nat m mod n) : sub_eq_of_eq_add H theorem neg_succ_of_nat_mod (m : ℕ) {b : ℤ} (bpos : b > 0) : -[1+m] mod b = b - 1 - m mod b := calc -[1+m] mod b = -(m + 1) - -[1+m] div b * b : rfl ... = -(m + 1) - -(m div b + 1) * b : neg_succ_of_nat_div _ bpos ... = -m + -1 + (b + m div b * b) : by rewrite [neg_add, -neg_mul_eq_neg_mul, sub_neg_eq_add, mul.right_distrib, one_mul, (add.comm b)] ... = b + -1 + (-m + m div b * b) : by rewrite [-*add.assoc, add.comm (-m), add.right_comm (-1), (add.comm b)] ... = b - 1 - m mod b : by rewrite [↑modulo, *sub_eq_add_neg, neg_add, neg_neg] theorem mod_neg (a b : ℤ) : a mod -b = a mod b := calc a mod -b = a - (a div -b) * -b : rfl ... = a - -(a div b) * -b : div_neg ... = a - a div b * b : neg_mul_neg ... = a mod b : rfl theorem mod_abs (a b : ℤ) : a mod (abs b) = a mod b := abs.by_cases rfl !mod_neg theorem zero_mod (b : ℤ) : 0 mod b = 0 := by rewrite [↑modulo, zero_div, zero_mul, sub_zero] theorem mod_zero (a : ℤ) : a mod 0 = a := by rewrite [↑modulo, mul_zero, sub_zero] theorem mod_one (a : ℤ) : a mod 1 = 0 := calc a mod 1 = a - a div 1 * 1 : rfl ... = 0 : by rewrite [mul_one, div_one, sub_self] private lemma of_nat_mod_abs (m : ℕ) (b : ℤ) : m mod (abs b) = (#nat m mod (nat_abs b)) := calc m mod (abs b) = m mod (nat_abs b) : of_nat_nat_abs ... = (#nat m mod (nat_abs b)) : of_nat_mod private lemma of_nat_mod_abs_lt (m : ℕ) {b : ℤ} (H : b ≠ 0) : m mod (abs b) < (abs b) := have H1 : abs b > 0, from abs_pos_of_ne_zero H, have H2 : (#nat nat_abs b > 0), from lt_of_of_nat_lt_of_nat (!of_nat_nat_abs⁻¹ ▸ H1), calc m mod (abs b) = (#nat m mod (nat_abs b)) : of_nat_mod_abs m b ... < nat_abs b : of_nat_lt_of_nat_of_lt (!nat.mod_lt H2) ... = abs b : of_nat_nat_abs _ theorem mod_eq_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a mod b = a := obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1, obtain n (Hn : b = of_nat n), from exists_eq_of_nat (le_of_lt (lt_of_le_of_lt H1 H2)), begin revert H2, rewrite [Hm, Hn, of_nat_mod, of_nat_lt_of_nat, of_nat_eq_of_nat], apply nat.mod_eq_of_lt end theorem mod_nonneg (a : ℤ) {b : ℤ} (H : b ≠ 0) : a mod b ≥ 0 := have H1 : abs b > 0, from abs_pos_of_ne_zero H, have H2 : a mod (abs b) ≥ 0, from int.cases_on a (take m, (of_nat_mod_abs m b)⁻¹ ▸ of_nat_nonneg (nat.modulo m (nat_abs b))) (take m, have H3 : 1 + m mod (abs b) ≤ (abs b), from (!add.comm ▸ add_one_le_of_lt (of_nat_mod_abs_lt m H)), calc -[1+m] mod (abs b) = abs b - 1 - m mod (abs b) : neg_succ_of_nat_mod _ H1 ... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc] ... ≥ 0 : iff.mp' !sub_nonneg_iff_le H3), !mod_abs ▸ H2 theorem mod_lt (a : ℤ) {b : ℤ} (H : b ≠ 0) : a mod b < (abs b) := have H1 : abs b > 0, from abs_pos_of_ne_zero H, have H2 : a mod (abs b) < abs b, from int.cases_on a (take m, of_nat_mod_abs_lt m H) (take m, have H3 : abs b ≠ 0, from assume H', H (eq_zero_of_abs_eq_zero H'), have H4 : 1 + m mod (abs b) > 0, from add_pos_of_pos_of_nonneg dec_trivial (mod_nonneg _ H3), calc -[1+m] mod (abs b) = abs b - 1 - m mod (abs b) : neg_succ_of_nat_mod _ H1 ... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc] ... < abs b : sub_lt_self _ H4), !mod_abs ▸ H2 theorem add_mul_mod_self {a b c : ℤ} : (a + b * c) mod c = a mod c := decidable.by_cases (assume cz : c = 0, by rewrite [cz, mul_zero, add_zero]) (assume cnz, by rewrite [↑modulo, !add_mul_div_self cnz, mul.right_distrib, sub_add_eq_sub_sub_swap, add_sub_cancel]) theorem add_mul_mod_self_left (a b c : ℤ) : (a + b * c) mod b = a mod b := !mul.comm ▸ !add_mul_mod_self theorem add_mod_self {a b : ℤ} : (a + b) mod b = a mod b := by rewrite -(int.mul_one b) at {1}; apply add_mul_mod_self_left theorem add_mod_self_left {a b : ℤ} : (a + b) mod a = b mod a := !add.comm ▸ !add_mod_self theorem mod_add_mod (m n k : ℤ) : (m mod n + k) mod n = (m + k) mod n := by rewrite [eq_div_mul_add_mod m n at {2}, add.assoc, add.comm (m div n * n), add_mul_mod_self] theorem add_mod_mod (m n k : ℤ) : (m + n mod k) mod k = (m + n) mod k := by rewrite [add.comm, mod_add_mod, add.comm] theorem add_mod_eq_add_mod_right {m n k : ℤ} (i : ℤ) (H : m mod n = k mod n) : (m + i) mod n = (k + i) mod n := by rewrite [-mod_add_mod, -mod_add_mod k, H] theorem add_mod_eq_add_mod_left {m n k : ℤ} (i : ℤ) (H : m mod n = k mod n) : (i + m) mod n = (i + k) mod n := by rewrite [add.comm, add_mod_eq_add_mod_right _ H, add.comm] theorem mod_eq_mod_of_add_mod_eq_add_mod_right {m n k i : ℤ} (H : (m + i) mod n = (k + i) mod n) : m mod n = k mod n := assert H1 : (m + i + (-i)) mod n = (k + i + (-i)) mod n, from add_mod_eq_add_mod_right _ H, by rewrite [*add_neg_cancel_right at H1]; apply H1 theorem mod_eq_mod_of_add_mod_eq_add_mod_left {m n k i : ℤ} : (i + m) mod n = (i + k) mod n → m mod n = k mod n := by rewrite [add.comm i m, add.comm i k]; apply mod_eq_mod_of_add_mod_eq_add_mod_right theorem mul_mod_left (a b : ℤ) : (a * b) mod b = 0 := by rewrite [-zero_add (a * b), add_mul_mod_self, zero_mod] theorem mul_mod_right (a b : ℤ) : (a * b) mod a = 0 := !mul.comm ▸ !mul_mod_left theorem mod_self {a : ℤ} : a mod a = 0 := decidable.by_cases (assume H : a = 0, H⁻¹ ▸ !mod_zero) (assume H : a ≠ 0, calc a mod a = a - a div a * a : rfl ... = 0 : by rewrite [!div_self H, one_mul, sub_self]) theorem mod_lt_of_pos (a : ℤ) {b : ℤ} (H : b > 0) : a mod b < b := !abs_of_pos H ▸ !mod_lt (ne.symm (ne_of_lt H)) /- properties of div and mod -/ theorem mul_div_mul_of_pos_aux {a : ℤ} (b : ℤ) {c : ℤ} (H1 : a > 0) (H2 : c > 0) : a * b div (a * c) = b div c := have H3 : a * c ≠ 0, from ne.symm (ne_of_lt (mul_pos H1 H2)), have H4 : a * (b mod c) < a * c, from mul_lt_mul_of_pos_left (!mod_lt_of_pos H2) H1, have H5 : a * (b mod c) ≥ 0, from mul_nonneg (le_of_lt H1) (!mod_nonneg (ne.symm (ne_of_lt H2))), calc a * b div (a * c) = a * (b div c * c + b mod c) div (a * c) : eq_div_mul_add_mod ... = (a * (b mod c) + a * c * (b div c)) div (a * c) : by rewrite [!add.comm, mul.left_distrib, mul.comm _ c, -!mul.assoc] ... = a * (b mod c) div (a * c) + b div c : !add_mul_div_self_left H3 ... = 0 + b div c : {!div_eq_zero_of_lt H5 H4} ... = b div c : zero_add theorem mul_div_mul_of_pos {a : ℤ} (b c : ℤ) (H : a > 0) : a * b div (a * c) = b div c := lt.by_cases (assume H1 : c < 0, have H2 : -c > 0, from neg_pos_of_neg H1, calc a * b div (a * c) = - (a * b div (a * -c)) : by rewrite [!neg_mul_eq_mul_neg⁻¹, div_neg, neg_neg] ... = - (b div -c) : mul_div_mul_of_pos_aux _ H H2 ... = b div c : by rewrite [div_neg, neg_neg]) (assume H1 : c = 0, calc a * b div (a * c) = 0 : by rewrite [H1, mul_zero, div_zero] ... = b div c : by rewrite [H1, div_zero]) (assume H1 : c > 0, mul_div_mul_of_pos_aux _ H H1) theorem mul_div_mul_of_pos_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b > 0) : a * b div (c * b) = a div c := !mul.comm ▸ !mul.comm ▸ !mul_div_mul_of_pos H theorem mul_mod_mul_of_pos {a : ℤ} (b c : ℤ) (H : a > 0) : a * b mod (a * c) = a * (b mod c) := by rewrite [↑modulo, !mul_div_mul_of_pos H, mul_sub_left_distrib, mul.left_comm] theorem lt_div_add_one_mul_self (a : ℤ) {b : ℤ} (H : b > 0) : a < (a div b + 1) * b := have H : a - a div b * b < b, from !mod_lt_of_pos H, calc a < a div b * b + b : iff.mp' !lt_add_iff_sub_lt_left H ... = (a div b + 1) * b : by rewrite [mul.right_distrib, one_mul] theorem div_le_of_nonneg_of_nonneg {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) : a div b ≤ a := obtain (m : ℕ) (Hm : a = m), from exists_eq_of_nat Ha, obtain (n : ℕ) (Hn : b = n), from exists_eq_of_nat Hb, calc a div b = #nat m div n : by rewrite [Hm, Hn, of_nat_div] ... ≤ m : of_nat_le_of_nat_of_le !nat.div_le_self ... = a : Hm theorem abs_div_le_abs (a b : ℤ) : abs (a div b) ≤ abs a := have H : ∀a b, b > 0 → abs (a div b) ≤ abs a, from take a b, assume H1 : b > 0, or.elim (le_or_gt 0 a) (assume H2 : 0 ≤ a, have H3 : 0 ≤ b, from le_of_lt H1, calc abs (a div b) = a div b : abs_of_nonneg (div_nonneg H2 H3) ... ≤ a : div_le_of_nonneg_of_nonneg H2 H3 ... = abs a : abs_of_nonneg H2) (assume H2 : a < 0, have H3 : -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg H2), have H4 : (-a - 1) div b + 1 ≥ 0, from add_nonneg (div_nonneg H3 (le_of_lt H1)) (of_nat_le_of_nat_of_le !nat.zero_le), have H5 : (-a - 1) div b ≤ -a - 1, from div_le_of_nonneg_of_nonneg H3 (le_of_lt H1), calc abs (a div b) = abs ((-a - 1) div b + 1) : by rewrite [div_of_neg_of_pos H2 H1, abs_neg] ... = (-a - 1) div b + 1 : abs_of_nonneg H4 ... ≤ -a - 1 + 1 : add_le_add_right H5 _ ... = abs a : by rewrite [sub_add_cancel, abs_of_neg H2]), lt.by_cases (assume H1 : b < 0, calc abs (a div b) = abs (a div -b) : by rewrite [div_neg, abs_neg] ... ≤ abs a : H _ _ (neg_pos_of_neg H1)) (assume H1 : b = 0, calc abs (a div b) = 0 : by rewrite [H1, div_zero, abs_zero] ... ≤ abs a : abs_nonneg) (assume H1 : b > 0, H _ _ H1) theorem div_mul_cancel_of_mod_eq_zero {a b : ℤ} (H : a mod b = 0) : a div b * b = a := by rewrite [eq_div_mul_add_mod a b at {2}, H, add_zero] theorem mul_div_cancel_of_mod_eq_zero {a b : ℤ} (H : a mod b = 0) : b * (a div b) = a := !mul.comm ▸ div_mul_cancel_of_mod_eq_zero H /- dvd -/ theorem dvd_of_of_nat_dvd_of_nat {m n : ℕ} : of_nat m ∣ of_nat n → (#nat m ∣ n) := nat.by_cases_zero_pos n (assume H, nat.dvd_zero m) (take n', assume H1 : (#nat n' > 0), have H2 : of_nat n' > 0, from of_nat_pos H1, assume H3 : of_nat m ∣ of_nat n', dvd.elim H3 (take c, assume H4 : of_nat n' = of_nat m * c, have H5 : c > 0, from pos_of_mul_pos_left (H4 ▸ H2) !of_nat_nonneg, obtain k (H6 : c = of_nat k), from exists_eq_of_nat (le_of_lt H5), have H7 : n' = (#nat m * k), from (!iff.mp !of_nat_eq_of_nat (H6 ▸ H4)), nat.dvd.intro H7⁻¹)) theorem of_nat_dvd_of_nat_of_dvd {m n : ℕ} (H : #nat m ∣ n) : of_nat m ∣ of_nat n := nat.dvd.elim H (take k, assume H1 : #nat n = m * k, dvd.intro (!iff.mp' !of_nat_eq_of_nat H1⁻¹)) theorem of_nat_dvd_of_nat (m n : ℕ) : of_nat m ∣ of_nat n ↔ (#nat m ∣ n) := iff.intro dvd_of_of_nat_dvd_of_nat of_nat_dvd_of_nat_of_dvd theorem dvd.antisymm {a b : ℤ} (H1 : a ≥ 0) (H2 : b ≥ 0) : a ∣ b → b ∣ a → a = b := begin rewrite [-abs_of_nonneg H1, -abs_of_nonneg H2, -*of_nat_nat_abs], rewrite [*of_nat_dvd_of_nat, *of_nat_eq_of_nat], apply nat.dvd.antisymm end theorem dvd_of_mod_eq_zero {a b : ℤ} (H : b mod a = 0) : a ∣ b := dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H) theorem mod_eq_zero_of_dvd {a b : ℤ} (H : a ∣ b) : b mod a = 0 := dvd.elim H (take z, assume H1 : b = a * z, H1⁻¹ ▸ !mul_mod_right) theorem dvd_iff_mod_eq_zero (a b : ℤ) : a ∣ b ↔ b mod a = 0 := iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero definition dvd.decidable_rel [instance] : decidable_rel dvd := take a n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero) theorem div_mul_cancel {a b : ℤ} (H : b ∣ a) : a div b * b = a := div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H) theorem mul_div_cancel' {a b : ℤ} (H : a ∣ b) : a * (b div a) = b := !mul.comm ▸ !div_mul_cancel H theorem mul_div_assoc (a : ℤ) {b c : ℤ} (H : c ∣ b) : (a * b) div c = a * (b div c) := decidable.by_cases (assume cz : c = 0, by rewrite [cz, *div_zero, mul_zero]) (assume cnz : c ≠ 0, obtain d (H' : b = d * c), from exists_eq_mul_left_of_dvd H, by rewrite [H', -mul.assoc, *(!mul_div_cancel cnz)]) theorem div_dvd_div {a b c : ℤ} (H1 : a ∣ b) (H2 : b ∣ c) : b div a ∣ c div a := have H3 : b = b div a * a, from (div_mul_cancel H1)⁻¹, have H4 : c = c div a * a, from (div_mul_cancel (dvd.trans H1 H2))⁻¹, decidable.by_cases (assume H5 : a = 0, have H6: c div a = 0, from (congr_arg _ H5 ⬝ !div_zero), H6⁻¹ ▸ !dvd_zero) (assume H5 : a ≠ 0, dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2)) theorem div_eq_iff_eq_mul_right {a b : ℤ} (c : ℤ) (H : b ≠ 0) (H' : b ∣ a) : a div b = c ↔ a = b * c := iff.intro (assume H1, by rewrite [-H1, mul_div_cancel' H']) (assume H1, by rewrite [H1, !mul_div_cancel_left H]) theorem div_eq_iff_eq_mul_left {a b : ℤ} (c : ℤ) (H : b ≠ 0) (H' : b ∣ a) : a div b = c ↔ a = c * b := !mul.comm ▸ !div_eq_iff_eq_mul_right H H' theorem eq_mul_of_div_eq_right {a b c : ℤ} (H1 : b ∣ a) (H2 : a div b = c) : a = b * c := calc a = b * (a div b) : mul_div_cancel' H1 ... = b * c : H2 theorem div_eq_of_eq_mul_right {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = b * c) : a div b = c := calc a div b = b * c div b : H2 ... = c : !mul_div_cancel_left H1 theorem eq_mul_of_div_eq_left {a b c : ℤ} (H1 : b ∣ a) (H2 : a div b = c) : a = c * b := !mul.comm ▸ !eq_mul_of_div_eq_right H1 H2 theorem div_eq_of_eq_mul_left {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = c * b) : a div b = c := div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2) theorem neg_div_of_dvd {a b : ℤ} (H : b ∣ a) : -a div b = -(a div b) := decidable.by_cases (assume H1 : b = 0, by rewrite [H1, *div_zero, neg_zero]) (assume H1 : b ≠ 0, dvd.elim H (take c, assume H' : a = b * c, by rewrite [H', neg_mul_eq_mul_neg, *!mul_div_cancel_left H1])) /- div and ordering -/ theorem div_mul_le (a : ℤ) {b : ℤ} (H : b ≠ 0) : a div b * b ≤ a := calc a = a div b * b + a mod b : eq_div_mul_add_mod ... ≥ a div b * b : le_add_of_nonneg_right (!mod_nonneg H) theorem div_le_of_le_mul {a b c : ℤ} (H : c > 0) (H' : a ≤ b * c) : a div c ≤ b := le_of_mul_le_mul_right (calc a div c * c = a div c * c + 0 : add_zero ... ≤ a div c * c + a mod c : add_le_add_left (!mod_nonneg (ne_of_gt H)) ... = a : eq_div_mul_add_mod ... ≤ b * c : H') H theorem div_le_self (a : ℤ) {b : ℤ} (H1 : a ≥ 0) (H2 : b ≥ 0) : a div b ≤ a := or.elim (lt_or_eq_of_le H2) (assume H3 : b > 0, have H4 : b ≥ 1, from add_one_le_of_lt H3, have H5 : a ≤ a * b, from calc a = a * 1 : mul_one ... ≤ a * b : !mul_le_mul_of_nonneg_left H4 H1, div_le_of_le_mul H3 H5) (assume H3 : 0 = b, by rewrite [-H3, div_zero]; apply H1) theorem mul_le_of_le_div {a b c : ℤ} (H1 : c > 0) (H2 : a ≤ b div c) : a * c ≤ b := calc a * c ≤ b div c * c : !mul_le_mul_of_nonneg_right H2 (le_of_lt H1) ... ≤ b : !div_mul_le (ne_of_gt H1) theorem le_div_of_mul_le {a b c : ℤ} (H1 : c > 0) (H2 : a * c ≤ b) : a ≤ b div c := have H3 : a * c < (b div c + 1) * c, from calc a * c ≤ b : H2 ... = b div c * c + b mod c : eq_div_mul_add_mod ... < b div c * c + c : add_lt_add_left (!mod_lt_of_pos H1) ... = (b div c + 1) * c : by rewrite [mul.right_distrib, one_mul], le_of_lt_add_one (lt_of_mul_lt_mul_right H3 (le_of_lt H1)) theorem le_div_iff_mul_le {a b c : ℤ} (H : c > 0) : a ≤ b div c ↔ a * c ≤ b := iff.intro (!mul_le_of_le_div H) (!le_div_of_mul_le H) theorem div_le_div {a b c : ℤ} (H : c > 0) (H' : a ≤ b) : a div c ≤ b div c := le_div_of_mul_le H (le.trans (!div_mul_le (ne_of_gt H)) H') theorem div_lt_of_lt_mul {a b c : ℤ} (H : c > 0) (H' : a < b * c) : a div c < b := lt_of_mul_lt_mul_right (calc a div c * c = a div c * c + 0 : add_zero ... ≤ a div c * c + a mod c : add_le_add_left (!mod_nonneg (ne_of_gt H)) ... = a : eq_div_mul_add_mod ... < b * c : H') (le_of_lt H) theorem lt_mul_of_div_lt {a b c : ℤ} (H1 : c > 0) (H2 : a div c < b) : a < b * c := assert H3 : (a div c + 1) * c ≤ b * c, from !mul_le_mul_of_nonneg_right (add_one_le_of_lt H2) (le_of_lt H1), have H4 : a div c * c + c ≤ b * c, by rewrite [mul.right_distrib at H3, one_mul at H3]; apply H3, calc a = a div c * c + a mod c : eq_div_mul_add_mod ... < a div c * c + c : add_lt_add_left (!mod_lt_of_pos H1) ... ≤ b * c : H4 theorem div_lt_iff_lt_mul {a b c : ℤ} (H : c > 0) : a div c < b ↔ a < b * c := iff.intro (!lt_mul_of_div_lt H) (!div_lt_of_lt_mul H) theorem div_le_iff_le_mul_of_div {a b : ℤ} (c : ℤ) (H : b > 0) (H' : b ∣ a) : a div b ≤ c ↔ a ≤ c * b := by rewrite [propext (!le_iff_mul_le_mul_right H), !div_mul_cancel H'] theorem le_mul_of_div_le_of_div {a b c : ℤ} (H1 : b > 0) (H2 : b ∣ a) (H3 : a div b ≤ c) : a ≤ c * b := iff.mp (!div_le_iff_le_mul_of_div H1 H2) H3 theorem div_pos_of_pos_of_dvd {a b : ℤ} (H1 : a > 0) (H2 : b ≥ 0) (H3 : b ∣ a) : a div b > 0 := have H4 : b ≠ 0, from (assume H5 : b = 0, have H6 : a = 0, from eq_zero_of_zero_dvd (H5 ▸ H3), ne_of_gt H1 H6), have H6 : (a div b) * b > 0, by rewrite (div_mul_cancel H3); apply H1, pos_of_mul_pos_right H6 H2 theorem div_eq_div_of_dvd_of_dvd {a b c d : ℤ} (H1 : b ∣ a) (H2 : d ∣ c) (H3 : b ≠ 0) (H4 : d ≠ 0) (H5 : a * d = b * c) : a div b = c div d := begin apply div_eq_of_eq_mul_right H3, rewrite [-!mul_div_assoc H2], apply eq.symm, apply div_eq_of_eq_mul_left H4, apply eq.symm H5 end end int