/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad The notion of "finiteness" for sets. This approach is not computational: for example, just because an element s : set A satsifies finite s doesn't mean that we can compute the cardinality. For a computational representation, use the finset type. -/ import data.finset.to_set .classical_inverse open nat classical variable {A : Type} namespace set definition finite [class] (s : set A) : Prop := ∃ (s' : finset A), s = finset.to_set s' theorem finite_finset [instance] (s : finset A) : finite (finset.to_set s) := exists.intro s rfl /- to finset: casts every set to a finite set -/ noncomputable definition to_finset (s : set A) : finset A := if fins : finite s then some fins else finset.empty theorem to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : to_finset s = (#finset ∅) := by rewrite [↑to_finset, dif_neg nfins] theorem to_set_to_finset (s : set A) [fins : finite s] : finset.to_set (to_finset s) = s := by rewrite [↑to_finset, dif_pos fins]; exact eq.symm (some_spec fins) theorem mem_to_finset_eq (a : A) (s : set A) [finite s] : (#finset a ∈ to_finset s) = (a ∈ s) := by rewrite [-to_set_to_finset at {2}] theorem to_set_to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : finset.to_set (to_finset s) = ∅ := by rewrite [to_finset_of_not_finite nfins] theorem to_finset_to_set (s : finset A) : to_finset (finset.to_set s) = s := by rewrite [finset.eq_eq_to_set_eq, to_set_to_finset (finset.to_set s)] theorem to_finset_eq_of_to_set_eq {s : set A} {t : finset A} (H : finset.to_set t = s) : to_finset s = t := finset.eq_of_to_set_eq_to_set (by subst [s]; rewrite to_finset_to_set) /- finiteness -/ theorem finite_of_to_set_to_finset_eq {s : set A} (H : finset.to_set (to_finset s) = s) : finite s := by rewrite -H; apply finite_finset theorem finite_empty [instance] : finite (∅ : set A) := by rewrite [-finset.to_set_empty]; apply finite_finset theorem to_finset_empty : to_finset (∅ : set A) = (#finset ∅) := to_finset_eq_of_to_set_eq !finset.to_set_empty theorem to_finset_eq_empty_of_eq_empty {s : set A} [fins : finite s] (H : s = ∅) : to_finset s = finset.empty := by rewrite [H, to_finset_empty] theorem eq_empty_of_to_finset_eq_empty {s : set A} [fins : finite s] (H : to_finset s = finset.empty) : s = ∅ := by rewrite [-finset.to_set_empty, -H, to_set_to_finset] theorem to_finset_eq_empty (s : set A) [fins : finite s] : (to_finset s = finset.empty) ↔ (s = ∅) := iff.intro eq_empty_of_to_finset_eq_empty to_finset_eq_empty_of_eq_empty theorem finite_insert [instance] (a : A) (s : set A) [finite s] : finite (insert a s) := exists.intro (finset.insert a (to_finset s)) (by rewrite [finset.to_set_insert, to_set_to_finset]) theorem to_finset_insert (a : A) (s : set A) [finite s] : to_finset (insert a s) = finset.insert a (to_finset s) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_insert, to_set_to_finset] theorem finite_union [instance] (s t : set A) [finite s] [finite t] : finite (s ∪ t) := exists.intro (#finset to_finset s ∪ to_finset t) (by rewrite [finset.to_set_union, *to_set_to_finset]) theorem to_finset_union (s t : set A) [finite s] [finite t] : to_finset (s ∪ t) = (#finset to_finset s ∪ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_union, *to_set_to_finset] theorem finite_inter [instance] (s t : set A) [finite s] [finite t] : finite (s ∩ t) := exists.intro (#finset to_finset s ∩ to_finset t) (by rewrite [finset.to_set_inter, *to_set_to_finset]) theorem to_finset_inter (s t : set A) [finite s] [finite t] : to_finset (s ∩ t) = (#finset to_finset s ∩ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_inter, *to_set_to_finset] theorem finite_sep [instance] (s : set A) (p : A → Prop) [finite s] : finite {x ∈ s | p x} := exists.intro (finset.sep p (to_finset s)) (by rewrite [finset.to_set_sep, *to_set_to_finset]) theorem to_finset_sep (s : set A) (p : A → Prop) [finite s] : to_finset {x ∈ s | p x} = (#finset {x ∈ to_finset s | p x}) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_sep, to_set_to_finset] theorem finite_image [instance] {B : Type} (f : A → B) (s : set A) [finite s] : finite (f ' s) := exists.intro (finset.image f (to_finset s)) (by rewrite [finset.to_set_image, *to_set_to_finset]) theorem to_finset_image {B : Type} (f : A → B) (s : set A) [fins : finite s] : to_finset (f ' s) = (#finset f ' (to_finset s)) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_image, to_set_to_finset] theorem finite_diff [instance] (s t : set A) [finite s] : finite (s \ t) := !finite_sep theorem to_finset_diff (s t : set A) [finite s] [finite t] : to_finset (s \ t) = (#finset to_finset s \ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_diff, *to_set_to_finset] theorem finite_subset {s t : set A} [finite t] (ssubt : s ⊆ t) : finite s := by rewrite (eq_sep_of_subset ssubt); apply finite_sep theorem to_finset_subset_to_finset_eq (s t : set A) [finite s] [finite t] : (#finset to_finset s ⊆ to_finset t) = (s ⊆ t) := by rewrite [finset.subset_eq_to_set_subset, *to_set_to_finset] theorem finite_of_finite_insert {s : set A} {a : A} (finias : finite (insert a s)) : finite s := finite_subset (subset_insert a s) theorem finite_upto [instance] (n : ℕ) : finite {i | i < n} := by rewrite [-finset.to_set_upto n]; apply finite_finset theorem to_finset_upto (n : ℕ) : to_finset {i | i < n} = finset.upto n := by apply (to_finset_eq_of_to_set_eq !finset.to_set_upto) theorem finite_of_surj_on {B : Type} {f : A → B} {s : set A} [finite s] {t : set B} (H : surj_on f s t) : finite t := finite_subset H theorem finite_of_inj_on {B : Type} {f : A → B} {s : set A} {t : set B} [finite t] (mapsto : maps_to f s t) (injf : inj_on f s) : finite s := if H : s = ∅ then by rewrite H; apply _ else obtain (dflt : A) (xs : dflt ∈ s), from exists_mem_of_ne_empty H, let finv := inv_fun f s dflt in have surj_on finv t s, from surj_on_inv_fun_of_inj_on dflt mapsto injf, finite_of_surj_on this theorem finite_of_bij_on {B : Type} {f : A → B} {s : set A} {t : set B} [finite s] (bijf : bij_on f s t) : finite t := finite_of_surj_on (surj_on_of_bij_on bijf) theorem finite_of_bij_on' {B : Type} {f : A → B} {s : set A} {t : set B} [finite t] (bijf : bij_on f s t) : finite s := finite_of_inj_on (maps_to_of_bij_on bijf) (inj_on_of_bij_on bijf) theorem finite_iff_finite_of_bij_on {B : Type} {f : A → B} {s : set A} {t : set B} (bijf : bij_on f s t) : finite s ↔ finite t := iff.intro (assume fs, finite_of_bij_on bijf) (assume ft, finite_of_bij_on' bijf) theorem finite_powerset (s : set A) [finite s] : finite 𝒫 s := assert H : 𝒫 s = finset.to_set ' (finset.to_set (#finset 𝒫 (to_finset s))), from ext (take t, iff.intro (suppose t ∈ 𝒫 s, assert t ⊆ s, from this, assert finite t, from finite_subset this, assert (#finset to_finset t ∈ 𝒫 (to_finset s)), by rewrite [finset.mem_powerset_iff_subset, to_finset_subset_to_finset_eq]; apply `t ⊆ s`, assert to_finset t ∈ (finset.to_set (finset.powerset (to_finset s))), from this, mem_image this (by rewrite to_set_to_finset)) (assume H', obtain t' [(tmem : (#finset t' ∈ 𝒫 (to_finset s))) (teq : finset.to_set t' = t)], from H', show t ⊆ s, begin rewrite [-teq, finset.mem_powerset_iff_subset at tmem, -to_set_to_finset s], rewrite -finset.subset_eq_to_set_subset, assumption end)), by rewrite H; apply finite_image /- induction for finite sets -/ theorem induction_finite [recursor 6] {P : set A → Prop} (H1 : P ∅) (H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [finite s], a ∉ s → P s → P (insert a s)) : ∀ (s : set A) [finite s], P s := begin intro s fins, rewrite [-to_set_to_finset s], generalize to_finset s, intro s', induction s' using finset.induction with a s' nains ih, {rewrite finset.to_set_empty, apply H1}, rewrite [finset.to_set_insert], apply H2, {rewrite -finset.mem_eq_mem_to_set, assumption}, exact ih end theorem induction_on_finite {P : set A → Prop} (s : set A) [finite s] (H1 : P ∅) (H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [finite s], a ∉ s → P s → P (insert a s)) : P s := induction_finite H1 H2 s end set