-- Basic fusion import algebra.simplifier open algebra universe l constants (T : Type.{l}) (s : algebra.comm_ring T) constants (x1 x2 x3 x4 : T) (f g : T → T) attribute s [instance] set_option simplify.max_steps 10000 set_option simplify.fuse true #simplify eq simplifier.som 0 x1 #simplify eq simplifier.som 0 x1 + x1 #simplify eq simplifier.som 0 (x1 + x1) + x1 #simplify eq simplifier.som 0 (x1 + x1) + (x1 + x1) #simplify eq simplifier.som 0 x1 + x1 + x1 + x1 #simplify eq simplifier.som 0 x1 + x1 + (x1 + x1) + x1 #simplify eq simplifier.som 0 x1 - x1 #simplify eq simplifier.som 0 (x1 - x1) + x1 #simplify eq simplifier.som 0 (x1 + x1) - (x1 + x1) #simplify eq simplifier.som 0 x1 + x1 - x1 - x1 #simplify eq simplifier.som 0 x1 + x1 + (x1 + x1) + x1 #simplify eq simplifier.som 0 (x1 - x2) + x2 - x1 #simplify eq simplifier.som 0 (x1 + x1 + x2 + x1) - 2* x2 + 1 * x2 - 3 * x1 #simplify eq simplifier.som 0 x2 + x1 - x2 - - x1 #simplify eq simplifier.som 0 x2 * x1 + 3 * x1 + (2 * x2 - 8 * x2 * 4 * x1) + x1 * x2 #simplify eq simplifier.som 0 (x1 - 2 * x3 * x2) + x2 * x3 * 3 - 1 * 0 * x1 * x2 #simplify eq simplifier.som 0 (x1 * x3 + x1 * 2 + x2 * 3 * x3 + x1 * x2) - 2* x2 * x1 + 1 * x2 * x1 - 3 * x1 * x3 #simplify eq simplifier.som 0 x2 + x1 - x2 - - x1