import kernel import macros variable Nat : Type alias ℕ : Nat namespace Nat builtin numeral builtin add : Nat → Nat → Nat infixl 65 + : add builtin mul : Nat → Nat → Nat infixl 70 * : mul builtin le : Nat → Nat → Bool infix 50 <= : le infix 50 ≤ : le definition ge (a b : Nat) := b ≤ a infix 50 >= : ge infix 50 ≥ : ge definition lt (a b : Nat) := ¬ (a ≥ b) infix 50 < : lt definition gt (a b : Nat) := ¬ (a ≤ b) infix 50 > : gt definition id (a : Nat) := a notation 55 | _ | : id axiom SuccNeZero (a : Nat) : a + 1 ≠ 0 axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b axiom PlusZero (a : Nat) : a + 0 = a axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1 axiom MulZero (a : Nat) : a * 0 = 0 axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c, a + c = b axiom Induction {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : Π (n : Nat) (iH : P n), P (n + 1)) : P a theorem ZeroNeOne : 0 ≠ 1 := Trivial theorem NeZeroPred' (a : Nat) : a ≠ 0 ⇒ ∃ b, b + 1 = a := Induction a (Assume H : 0 ≠ 0, FalseElim (∃ b, b + 1 = 0) H) (λ (n : Nat) (iH : n ≠ 0 ⇒ ∃ b, b + 1 = n), Assume H : n + 1 ≠ 0, DisjCases (EM (n = 0)) (λ Heq0 : n = 0, ExistsIntro 0 (calc 0 + 1 = n + 1 : { Symm Heq0 })) (λ Hne0 : n ≠ 0, Obtain (w : Nat) (Hw : w + 1 = n), from (MP iH Hne0), ExistsIntro (w + 1) (calc w + 1 + 1 = n + 1 : { Hw }))) theorem NeZeroPred {a : Nat} (H : a ≠ 0) : ∃ b, b + 1 = a := MP (NeZeroPred' a) H theorem Destruct {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : Π n, a = n + 1 → B) : B := DisjCases (EM (a = 0)) (λ Heq0 : a = 0, H1 Heq0) (λ Hne0 : a ≠ 0, Obtain (w : Nat) (Hw : w + 1 = a), from (NeZeroPred Hne0), H2 w (Symm Hw)) theorem ZeroPlus (a : Nat) : 0 + a = a := Induction a (have 0 + 0 = 0 : Trivial) (λ (n : Nat) (iH : 0 + n = n), calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc 0 n ... = n + 1 : { iH }) theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1 := Induction b (calc (a + 1) + 0 = a + 1 : PlusZero (a + 1) ... = (a + 0) + 1 : { Symm (PlusZero a) }) (λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1), calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc (a + 1) n ... = ((a + n) + 1) + 1 : { iH } ... = (a + (n + 1)) + 1 : { have (a + n) + 1 = a + (n + 1) : Symm (PlusSucc a n) }) theorem PlusComm (a b : Nat) : a + b = b + a := Induction b (calc a + 0 = a : PlusZero a ... = 0 + a : Symm (ZeroPlus a)) (λ (n : Nat) (iH : a + n = n + a), calc a + (n + 1) = (a + n) + 1 : PlusSucc a n ... = (n + a) + 1 : { iH } ... = (n + 1) + a : Symm (SuccPlus n a)) theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c := Induction a (calc 0 + (b + c) = b + c : ZeroPlus (b + c) ... = (0 + b) + c : { Symm (ZeroPlus b) }) (λ (n : Nat) (iH : n + (b + c) = (n + b) + c), calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus n (b + c) ... = ((n + b) + c) + 1 : { iH } ... = ((n + b) + 1) + c : Symm (SuccPlus (n + b) c) ... = ((n + 1) + b) + c : { have (n + b) + 1 = (n + 1) + b : Symm (SuccPlus n b) }) theorem ZeroMul (a : Nat) : 0 * a = 0 := Induction a (have 0 * 0 = 0 : Trivial) (λ (n : Nat) (iH : 0 * n = 0), calc 0 * (n + 1) = (0 * n) + 0 : MulSucc 0 n ... = 0 + 0 : { iH } ... = 0 : Trivial) theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b := Induction b (calc (a + 1) * 0 = 0 : MulZero (a + 1) ... = a * 0 : Symm (MulZero a) ... = a * 0 + 0 : Symm (PlusZero (a * 0))) (λ (n : Nat) (iH : (a + 1) * n = a * n + n), calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc (a + 1) n ... = a * n + n + (a + 1) : { iH } ... = a * n + n + a + 1 : PlusAssoc (a * n + n) a 1 ... = a * n + (n + a) + 1 : { have a * n + n + a = a * n + (n + a) : Symm (PlusAssoc (a * n) n a) } ... = a * n + (a + n) + 1 : { PlusComm n a } ... = a * n + a + n + 1 : { PlusAssoc (a * n) a n } ... = a * (n + 1) + n + 1 : { Symm (MulSucc a n) } ... = a * (n + 1) + (n + 1) : Symm (PlusAssoc (a * (n + 1)) n 1)) theorem OneMul (a : Nat) : 1 * a = a := Induction a (have 1 * 0 = 0 : Trivial) (λ (n : Nat) (iH : 1 * n = n), calc 1 * (n + 1) = 1 * n + 1 : MulSucc 1 n ... = n + 1 : { iH }) theorem MulOne (a : Nat) : a * 1 = a := Induction a (have 0 * 1 = 0 : Trivial) (λ (n : Nat) (iH : n * 1 = n), calc (n + 1) * 1 = n * 1 + 1 : SuccMul n 1 ... = n + 1 : { iH }) theorem MulComm (a b : Nat) : a * b = b * a := Induction b (calc a * 0 = 0 : MulZero a ... = 0 * a : Symm (ZeroMul a)) (λ (n : Nat) (iH : a * n = n * a), calc a * (n + 1) = a * n + a : MulSucc a n ... = n * a + a : { iH } ... = (n + 1) * a : Symm (SuccMul n a)) theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c := Induction a (calc 0 * (b + c) = 0 : ZeroMul (b + c) ... = 0 + 0 : Trivial ... = 0 * b + 0 : { Symm (ZeroMul b) } ... = 0 * b + 0 * c : { Symm (ZeroMul c) }) (λ (n : Nat) (iH : n * (b + c) = n * b + n * c), calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul n (b + c) ... = n * b + n * c + (b + c) : { iH } ... = n * b + n * c + b + c : PlusAssoc (n * b + n * c) b c ... = n * b + (n * c + b) + c : { Symm (PlusAssoc (n * b) (n * c) b) } ... = n * b + (b + n * c) + c : { PlusComm (n * c) b } ... = n * b + b + n * c + c : { PlusAssoc (n * b) b (n * c) } ... = (n + 1) * b + n * c + c : { Symm (SuccMul n b) } ... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc ((n + 1) * b) (n * c) c) ... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul n c) }) theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c := calc (a + b) * c = c * (a + b) : MulComm (a + b) c ... = c * a + c * b : Distribute c a b ... = a * c + c * b : { MulComm c a } ... = a * c + b * c : { MulComm c b } theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c := Induction a (calc 0 * (b * c) = 0 : ZeroMul (b * c) ... = 0 * c : Symm (ZeroMul c) ... = (0 * b) * c : { Symm (ZeroMul b) }) (λ (n : Nat) (iH : n * (b * c) = n * b * c), calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul n (b * c) ... = n * b * c + (b * c) : { iH } ... = (n * b + b) * c : Symm (Distribute2 (n * b) b c) ... = (n + 1) * b * c : { Symm (SuccMul n b) }) theorem PlusInj' (a b c : Nat) : a + b = a + c ⇒ b = c := Induction a (Assume H : 0 + b = 0 + c, calc b = 0 + b : Symm (ZeroPlus b) ... = 0 + c : H ... = c : ZeroPlus c) (λ (n : Nat) (iH : n + b = n + c ⇒ b = c), Assume H : n + 1 + b = n + 1 + c, let L1 : n + b + 1 = n + c + 1 := (calc n + b + 1 = n + (b + 1) : Symm (PlusAssoc n b 1) ... = n + (1 + b) : { PlusComm b 1 } ... = n + 1 + b : PlusAssoc n 1 b ... = n + 1 + c : H ... = n + (1 + c) : Symm (PlusAssoc n 1 c) ... = n + (c + 1) : { PlusComm 1 c } ... = n + c + 1 : PlusAssoc n c 1), L2 : n + b = n + c := SuccInj L1 in MP iH L2) theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c := MP (PlusInj' a b c) H theorem PlusEq0 {a b : Nat} (H : a + b = 0) : a = 0 := Destruct (λ H1 : a = 0, H1) (λ (n : Nat) (H1 : a = n + 1), AbsurdElim (a = 0) H (calc a + b = n + 1 + b : { H1 } ... = n + (1 + b) : Symm (PlusAssoc n 1 b) ... = n + (b + 1) : { PlusComm 1 b } ... = n + b + 1 : PlusAssoc n b 1 ... ≠ 0 : SuccNeZero (n + b))) theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b := EqMP (Symm (LeDef a b)) (have (∃ x, a + x = b) : ExistsIntro c H) theorem LeElim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b := EqMP (LeDef a b) H theorem LeRefl (a : Nat) : a ≤ a := LeIntro (PlusZero a) theorem LeZero (a : Nat) : 0 ≤ a := LeIntro (ZeroPlus a) theorem LeTrans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := Obtain (w1 : Nat) (Hw1 : a + w1 = b), from (LeElim H1), Obtain (w2 : Nat) (Hw2 : b + w2 = c), from (LeElim H2), LeIntro (calc a + (w1 + w2) = a + w1 + w2 : PlusAssoc a w1 w2 ... = b + w2 : { Hw1 } ... = c : Hw2) theorem LeInj {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c := Obtain (w : Nat) (Hw : a + w = b), from (LeElim H), LeIntro (calc a + c + w = a + (c + w) : Symm (PlusAssoc a c w) ... = a + (w + c) : { PlusComm c w } ... = a + w + c : PlusAssoc a w c ... = b + c : { Hw }) theorem LeAntiSymm {a b : Nat} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := Obtain (w1 : Nat) (Hw1 : a + w1 = b), from (LeElim H1), Obtain (w2 : Nat) (Hw2 : b + w2 = a), from (LeElim H2), let L1 : w1 + w2 = 0 := PlusInj (calc a + (w1 + w2) = a + w1 + w2 : { PlusAssoc a w1 w2 } ... = b + w2 : { Hw1 } ... = a : Hw2 ... = a + 0 : Symm (PlusZero a)), L2 : w1 = 0 := PlusEq0 L1 in calc a = a + 0 : Symm (PlusZero a) ... = a + w1 : { Symm L2 } ... = b : Hw1 setopaque ge true setopaque lt true setopaque gt true setopaque id true end