# Set: pp::colors Set: pp::unicode Proved: T1 theorem T1 (A B : Bool) (assumption : A ∧ B) : B ∧ A := let lemma1 : A := Conjunct1 assumption, lemma2 : B := Conjunct2 assumption in Conj lemma2 lemma1 # Proof state: A : Bool, B : Bool, assumption : A ∧ B ⊢ A ## Proof state: no goals ## Proof state: A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B ## Proof state: no goals ## Proof state: A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B ∧ A ## Proof state: no goals ## Proved: T2 # Proof state: A : Bool, B : Bool, assumption : A ∧ B ⊢ A ## Proof state: A : Bool, B : Bool, assumption::1 : A, assumption::2 : B ⊢ A ## Proof state: no goals ## Proof state: A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B ## Proof state: A : Bool, B : Bool, assumption::1 : A, assumption::2 : B, lemma1 : A ⊢ B ## Proof state: no goals ## Proof state: A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B ∧ A ## Proof state: A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ A ## Proof state: no goals ## Proved: T3 # Proof state: A : Bool, B : Bool, assumption : A ∧ B ⊢ A ## Proof state: A : Bool, B : Bool, assumption::1 : A, assumption::2 : B ⊢ A ## Proof state: no goals ## Proof state: A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B ## Proof state: A : Bool, B : Bool, assumption::1 : A, assumption::2 : B, lemma1 : A ⊢ B ## Proof state: no goals ## Proved: T4 #