Import Nat. Variable Int : Type. Alias ℤ : Int. Builtin nat_to_int : Nat → Int. Coercion nat_to_int. Namespace Int. Builtin numeral. Builtin add : Int → Int → Int. Infixl 65 + : add. Builtin mul : Int → Int → Int. Infixl 70 * : mul. Builtin div : Int → Int → Int. Infixl 70 div : div. Builtin le : Int → Int → Bool. Infix 50 <= : le. Infix 50 ≤ : le. Definition ge (a b : Int) : Bool := b ≤ a. Infix 50 >= : ge. Infix 50 ≥ : ge. Definition lt (a b : Int) : Bool := ¬ (a ≥ b). Infix 50 < : lt. Definition gt (a b : Int) : Bool := ¬ (a ≤ b). Infix 50 > : gt. Definition sub (a b : Int) : Int := a + -1 * b. Infixl 65 - : sub. Definition neg (a : Int) : Int := -1 * a. Notation 75 - _ : neg. Definition mod (a b : Int) : Int := a - b * (a div b). Infixl 70 mod : mod. Definition divides (a b : Int) : Bool := (b mod a) = 0. Infix 50 | : divides. Definition abs (a : Int) : Int := if (0 ≤ a) a (- a). Notation 55 | _ | : abs. SetOpaque sub true. SetOpaque neg true. SetOpaque mod true. SetOpaque divides true. SetOpaque abs true. SetOpaque ge true. SetOpaque lt true. SetOpaque gt true. EndNamespace. Namespace Nat. Definition sub (a b : Nat) : Int := nat_to_int a - nat_to_int b. Infixl 65 - : sub. Definition neg (a : Nat) : Int := - (nat_to_int a). Notation 75 - _ : neg. SetOpaque sub true. SetOpaque neg true. EndNamespace.