---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad ---------------------------------------------------------------------------------------------------- import logic.connectives.prop -- implication -- ----------- abbreviation imp (a b : Prop) : Prop := a → b -- true and false -- -------------- inductive false : Prop theorem false_elim (c : Prop) (H : false) : c := false_rec c H inductive true : Prop := | trivial : true abbreviation not (a : Prop) := a → false prefix `¬`:40 := not notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r -- not -- --- theorem not_intro {a : Prop} (H : a → false) : ¬a := H theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2 theorem absurd {a : Prop} (H1 : a) (H2 : ¬a) : false := H2 H1 theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a := assume Ha : a, absurd (H1 Ha) H2 theorem contrapos {a b : Prop} (H : a → b) : ¬b → ¬a := assume Hnb : ¬b, mt H Hnb theorem absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬a) : b := false_elim b (absurd H1 H2) theorem absurd_not_true (H : ¬true) : false := absurd trivial H theorem not_false_trivial : ¬false := assume H : false, H theorem not_implies_left {a b : Prop} (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd_elim b Ha Hna) H theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H -- and -- --- inductive and (a b : Prop) : Prop := | and_intro : a → b → and a b infixr `/\`:35 := and infixr `∧`:35 := and theorem and_elim {a b c : Prop} (H1 : a ∧ b) (H2 : a → b → c) : c := and_rec H2 H1 theorem and_elim_left {a b : Prop} (H : a ∧ b) : a := and_rec (λa b, a) H theorem and_elim_right {a b : Prop} (H : a ∧ b) : b := and_rec (λa b, b) H theorem and_swap {a b : Prop} (H : a ∧ b) : b ∧ a := and_intro (and_elim_right H) (and_elim_left H) theorem and_not_left {a : Prop} (b : Prop) (Hna : ¬a) : ¬(a ∧ b) := assume H : a ∧ b, absurd (and_elim_left H) Hna theorem and_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := assume H : a ∧ b, absurd (and_elim_right H) Hnb theorem and_imp_and {a b c d : Prop} (H1 : a ∧ b) (H2 : a → c) (H3 : b → d) : c ∧ d := and_elim H1 (assume Ha : a, assume Hb : b, and_intro (H2 Ha) (H3 Hb)) theorem imp_and_left {a b c : Prop} (H1 : a ∧ c) (H : a → b) : b ∧ c := and_elim H1 (assume Ha : a, assume Hc : c, and_intro (H Ha) Hc) theorem imp_and_right {a b c : Prop} (H1 : c ∧ a) (H : a → b) : c ∧ b := and_elim H1 (assume Hc : c, assume Ha : a, and_intro Hc (H Ha)) -- or -- -- inductive or (a b : Prop) : Prop := | or_intro_left : a → or a b | or_intro_right : b → or a b infixr `\/`:30 := or infixr `∨`:30 := or theorem or_inl {a b : Prop} (Ha : a) : a ∨ b := or_intro_left b Ha theorem or_inr {a b : Prop} (Hb : b) : a ∨ b := or_intro_right a Hb theorem or_elim {a b c : Prop} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c := or_rec H2 H3 H1 theorem resolve_right {a b : Prop} (H1 : a ∨ b) (H2 : ¬a) : b := or_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb) theorem resolve_left {a b : Prop} (H1 : a ∨ b) (H2 : ¬b) : a := or_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2) theorem or_swap {a b : Prop} (H : a ∨ b) : b ∨ a := or_elim H (assume Ha, or_inr Ha) (assume Hb, or_inl Hb) theorem or_not_intro {a b : Prop} (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) := assume H : a ∨ b, or_elim H (assume Ha, absurd_elim _ Ha Hna) (assume Hb, absurd_elim _ Hb Hnb) theorem or_imp_or {a b c d : Prop} (H1 : a ∨ b) (H2 : a → c) (H3 : b → d) : c ∨ d := or_elim H1 (assume Ha : a, or_inl (H2 Ha)) (assume Hb : b, or_inr (H3 Hb)) theorem imp_or_left {a b c : Prop} (H1 : a ∨ c) (H : a → b) : b ∨ c := or_elim H1 (assume H2 : a, or_inl (H H2)) (assume H2 : c, or_inr H2) theorem imp_or_right {a b c : Prop} (H1 : c ∨ a) (H : a → b) : c ∨ b := or_elim H1 (assume H2 : c, or_inl H2) (assume H2 : a, or_inr (H H2)) -- iff -- --- definition iff (a b : Prop) := (a → b) ∧ (b → a) infix `<->`:25 := iff infix `↔`:25 := iff theorem iff_intro {a b : Prop} (H1 : a → b) (H2 : b → a) : a ↔ b := and_intro H1 H2 theorem iff_elim {a b c : Prop} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c := and_rec H1 H2 theorem iff_elim_left {a b : Prop} (H : a ↔ b) : a → b := iff_elim (assume H1 H2, H1) H theorem iff_elim_right {a b : Prop} (H : a ↔ b) : b → a := iff_elim (assume H1 H2, H2) H theorem iff_flip_sign {a b : Prop} (H1 : a ↔ b) : ¬a ↔ ¬b := iff_intro (assume Hna, mt (iff_elim_right H1) Hna) (assume Hnb, mt (iff_elim_left H1) Hnb) theorem iff_refl (a : Prop) : a ↔ a := iff_intro (assume H, H) (assume H, H) theorem iff_trans {a b c : Prop} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c := iff_intro (assume Ha, iff_elim_left H2 (iff_elim_left H1 Ha)) (assume Hc, iff_elim_right H1 (iff_elim_right H2 Hc)) theorem iff_symm {a b : Prop} (H : a ↔ b) : b ↔ a := iff_intro (assume Hb, iff_elim_right H Hb) (assume Ha, iff_elim_left H Ha) calc_trans iff_trans -- comm and assoc for and / or -- --------------------------- theorem and_comm (a b : Prop) : a ∧ b ↔ b ∧ a := iff_intro (λH, and_swap H) (λH, and_swap H) theorem and_assoc (a b c : Prop) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := iff_intro (assume H, and_intro (and_elim_left (and_elim_left H)) (and_intro (and_elim_right (and_elim_left H)) (and_elim_right H))) (assume H, and_intro (and_intro (and_elim_left H) (and_elim_left (and_elim_right H))) (and_elim_right (and_elim_right H))) theorem or_comm (a b : Prop) : a ∨ b ↔ b ∨ a := iff_intro (λH, or_swap H) (λH, or_swap H) theorem or_assoc (a b c : Prop) : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := iff_intro (assume H, or_elim H (assume H1, or_elim H1 (assume Ha, or_inl Ha) (assume Hb, or_inr (or_inl Hb))) (assume Hc, or_inr (or_inr Hc))) (assume H, or_elim H (assume Ha, (or_inl (or_inl Ha))) (assume H1, or_elim H1 (assume Hb, or_inl (or_inr Hb)) (assume Hc, or_inr Hc)))