-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad, Floris van Doorn -- Ported from Coq HoTT import .path data.nat.basic data.empty data.unit data.sigma open path nat sigma -- Truncation levels -- ----------------- -- TODO: make everything universe polymorphic structure contr_internal (A : Type₊) := mk :: (center : A) (contr : Π(a : A), center ≈ a) inductive trunc_index : Type := minus_two : trunc_index, trunc_S : trunc_index → trunc_index namespace truncation postfix `.+1`:max := trunc_index.trunc_S postfix `.+2`:max := λn, (n .+1 .+1) notation `-2` := trunc_index.minus_two notation `-1` := (-2.+1) definition trunc_index_add (n m : trunc_index) : trunc_index := trunc_index.rec_on m n (λ k l, l .+1) -- Coq calls this `-2+`, but `+2+` looks more natural, since trunc_index_add 0 0 = 2 infix `+2+`:65 := trunc_index_add definition trunc_index_leq (n m : trunc_index) : Type₁ := trunc_index.rec_on n (λm, unit) (λ n p m, trunc_index.rec_on m (λ p, empty) (λ m q p, p m) p) m notation x <= y := trunc_index_leq x y notation x ≤ y := trunc_index_leq x y definition nat_to_trunc_index [coercion] (n : nat) : trunc_index := nat.rec_on n (-1.+1) (λ n k, k.+1) definition is_trunc_internal (n : trunc_index) : Type₁ → Type₁ := trunc_index.rec_on n (λA, contr_internal A) (λn trunc_n A, (Π(x y : A), trunc_n (x ≈ y))) structure is_trunc [class] (n : trunc_index) (A : Type) := mk :: (to_internal : is_trunc_internal n A) -- should this be notation or definitions --prefix `is_contr`:max := is_trunc -2 definition is_contr := is_trunc -2 definition is_hprop := is_trunc -1 definition is_hset := is_trunc nat.zero variable {A : Type₁} definition is_contr.mk (center : A) (contr : Π(a : A), center ≈ a) : is_contr A := is_trunc.mk (contr_internal.mk center contr) definition center (A : Type₁) [H : is_contr A] : A := @contr_internal.center A is_trunc.to_internal definition contr [H : is_contr A] (a : A) : !center ≈ a := @contr_internal.contr A is_trunc.to_internal a definition is_trunc_succ (A : Type₁) {n : trunc_index} [H : ∀x y : A, is_trunc n (x ≈ y)] : is_trunc (n.+1) A := is_trunc.mk (λ x y, is_trunc.to_internal) definition succ_is_trunc {n : trunc_index} [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) := is_trunc.mk (is_trunc.to_internal x y) definition path_contr [H : is_contr A] (x y : A) : x ≈ y := (contr x)⁻¹ ⬝ (contr y) definition path2_contr {A : Type₁} [H : is_contr A] {x y : A} (p q : x ≈ y) : p ≈ q := have K : ∀ (r : x ≈ y), path_contr x y ≈ r, from (λ r, path.rec_on r !concat_Vp), K p⁻¹ ⬝ K q definition contr_paths_contr [instance] {A : Type₁} [H : is_contr A] (x y : A) : is_contr (x ≈ y) := is_contr.mk !path_contr (λ p, !path2_contr) definition trunc_succ (A : Type₁) (n : trunc_index) [H : is_trunc n A] : is_trunc (n.+1) A := trunc_index.rec_on n (λ A (H : is_contr A), !is_trunc_succ) (λ n IH A (H : is_trunc (n.+1) A), @is_trunc_succ _ _ (λ x y, IH _ !succ_is_trunc)) A H --in the proof the type of H is given explicitly to make it available for class inference definition contr_basedpaths [instance] {A : Type₁} (a : A) : is_contr (Σ(x : A), a ≈ x) := is_contr.mk (dpair a idp) (λp, sorry) -- Definition trunc_contr {n} {A} `{Contr A} : IsTrunc n A -- := (@trunc_leq -2 n tt _ _). -- Definition trunc_hprop {n} {A} `{IsHProp A} : IsTrunc n.+1 A -- := (@trunc_leq -1 n.+1 tt _ _). -- Definition trunc_hset {n} {A} `{IsHSet A} : IsTrunc n.+1.+1 A -- := (@trunc_leq 0 n.+1.+1 tt _ _). definition trunc_leq [instance] {A : Type₁} {m n : trunc_index} (H : m ≤ n) [H : is_trunc m A] : is_trunc n A := sorry definition is_hprop.mk (A : Type₁) (H : ∀x y : A, x ≈ y) : is_hprop A := sorry definition is_hprop.elim [H : is_hprop A] (x y : A) : x ≈ y := sorry definition is_trunc_is_hprop {n : trunc_index} : is_hprop (is_trunc n A) := sorry definition is_hset.mk (A : Type₁) (H : ∀(x y : A) (p q : x ≈ y), p ≈ q) : is_hset A := sorry definition is_hset.elim [H : is_hset A] ⦃x y : A⦄ (p q : x ≈ y) : p ≈ q := sorry end truncation