/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad The power function on the natural numbers. -/ import data.nat.basic data.nat.order data.nat.div algebra.group_power namespace nat section migrate_algebra open [classes] algebra local attribute nat.comm_semiring [instance] local attribute nat.linear_ordered_semiring [instance] definition pow (a : ℕ) (n : ℕ) : ℕ := algebra.pow a n migrate from algebra with nat replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos, add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le, le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg, lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right end migrate_algebra -- TODO: eventually this will be subsumed under the algebraic theorems theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 := show a * a = pow a (succ (succ zero)), from by rewrite [*pow_succ, *pow_zero, one_mul] theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c | a 0 0 h₁ h₂ := rfl | a (succ b) 0 h₁ h₂ := assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂), assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, absurd h₁ !lt.irrefl | a 0 (succ c) h₁ h₂ := assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)), assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, absurd h₁ !lt.irrefl | a (succ b) (succ c) h₁ h₂ := assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial), assert beqc : pow a b = pow a c, by rewrite [*pow_succ' at h₂]; exact (mul_cancel_left_of_ne_zero ane0 h₂), by rewrite [pow_cancel_left h₁ beqc] theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b | a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)] | a (succ b) h := by rewrite [pow_succ', mul_div_cancel_left _ (pos_of_ne_zero h)] end nat