/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Prime numbers. -/ import data.nat logic.identities open bool namespace nat open decidable definition prime [reducible] (p : nat) := p ≥ 2 ∧ ∀ m, m ∣ p → m = 1 ∨ m = p definition prime_ext (p : nat) := p ≥ 2 ∧ ∀ m, m ≤ p → m ∣ p → m = 1 ∨ m = p local attribute prime_ext [reducible] lemma prime_ext_iff_prime (p : nat) : prime_ext p ↔ prime p := iff.intro begin intro h, cases h with h₁ h₂, constructor, assumption, intro m d, exact h₂ m (le_of_dvd (lt_of_succ_le (le_of_succ_le h₁)) d) d end begin intro h, cases h with h₁ h₂, constructor, assumption, intro m l d, exact h₂ m d end definition decidable_prime [instance] (p : nat) : decidable (prime p) := decidable_of_decidable_of_iff _ (prime_ext_iff_prime p) lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 := assume h, obtain h₁ h₂, from h, h₁ theorem gt_one_of_prime {p : ℕ} (primep : prime p) : p > 1 := lt_of_succ_le (ge_two_of_prime primep) theorem pos_of_prime {p : ℕ} (primep : prime p) : p > 0 := lt.trans zero_lt_one (gt_one_of_prime primep) lemma not_prime_zero : ¬ prime 0 := λ h, absurd (ge_two_of_prime h) dec_trivial lemma not_prime_one : ¬ prime 1 := λ h, absurd (ge_two_of_prime h) dec_trivial lemma prime_two : prime 2 := dec_trivial lemma prime_three : prime 3 := dec_trivial lemma pred_prime_pos {p : nat} : prime p → pred p > 0 := assume h, have h₁ : p ≥ 2, from ge_two_of_prime h, lt_of_succ_le (pred_le_pred h₁) lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p := assume h, succ_pred_of_pos (pos_of_prime h) lemma eq_one_or_eq_self_of_prime_of_dvd {p m : nat} : prime p → m ∣ p → m = 1 ∨ m = p := assume h d, obtain h₁ h₂, from h, h₂ m d lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i := assume ipp pos h, have h₁ : p ∣ i, from dvd_of_mod_eq_zero h, have h₂ : p ≥ 2, from ge_two_of_prime ipp, have h₃ : p ≤ i, from le_of_dvd pos h₁, lt_of_succ_le (le.trans h₂ h₃) definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≠ 1 ∧ m ≠ n} := assume h₁ h₂, have h₃ : ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂, have h₄ : ¬ n ≥ 2 ∨ ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from iff.mp !not_and_iff_not_or_not h₃, have h₅ : ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from or_resolve_right h₄ (not_not_intro h₁), have h₆ : ¬ (∀ m, m < succ n → m ∣ n → m = 1 ∨ m = n), from assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) h₅, have h₇ : {m | m < succ n ∧ ¬(m ∣ n → m = 1 ∨ m = n)}, from bsub_not_of_not_ball h₆, obtain m hlt (h₈ : ¬(m ∣ n → m = 1 ∨ m = n)), from h₇, obtain (h₈ : m ∣ n) (h₉ : ¬ (m = 1 ∨ m = n)), from iff.mp !not_implies_iff_and_not h₈, have h₁₀ : ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₉, subtype.tag m (and.intro h₈ h₁₀) theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n := assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂) definition sub_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≥ 2 ∧ m < n} := assume h₁ h₂, have n_ne_0 : n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end, obtain m m_dvd_n m_ne_1 m_ne_n, from sub_dvd_of_not_prime h₁ h₂, assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) n_ne_0 end, begin existsi m, split, assumption, split, {cases m with m, exact absurd rfl m_ne_0, cases m with m, exact absurd rfl m_ne_1, exact succ_le_succ (succ_le_succ (zero_le _))}, {have m_le_n : m ≤ n, from le_of_dvd (pos_of_ne_zero n_ne_0) m_dvd_n, exact lt_of_le_and_ne m_le_n m_ne_n} end theorem ex_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≥ 2 ∧ m < n := assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime2 h₁ h₂) definition sub_prime_and_dvd {n : nat} : n ≥ 2 → {p | prime p ∧ p ∣ n} := nat.strong_rec_on n (take n, assume ih : ∀ m, m < n → m ≥ 2 → {p | prime p ∧ p ∣ m}, assume n_ge_2 : n ≥ 2, by_cases (λ h : prime n, subtype.tag n (and.intro h (dvd.refl n))) (λ h : ¬ prime n, obtain m m_dvd_n m_ge_2 m_lt_n, from sub_dvd_of_not_prime2 n_ge_2 h, obtain p (hp : prime p) (p_dvd_m : p ∣ m), from ih m m_lt_n m_ge_2, have p_dvd_n : p ∣ n, from dvd.trans p_dvd_m m_dvd_n, subtype.tag p (and.intro hp p_dvd_n))) lemma ex_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p ∣ n := assume h, ex_of_sub (sub_prime_and_dvd h) open eq.ops definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} := let m := fact (n + 1) in have m_ge_1 : m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)), have m1_ge_2 : m + 1 ≥ 2, from succ_le_succ m_ge_1, obtain p (prime_p : prime p) (p_dvd_m1 : p ∣ m + 1), from sub_prime_and_dvd m1_ge_2, have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p, have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2), have p_ge_n : p ≥ n, from by_contradiction (assume h₁ : ¬ p ≥ n, have h₂ : p < n, from lt_of_not_ge h₁, have h₃ : p ≤ n + 1, from le_of_lt (lt.step h₂), have h₄ : p ∣ m, from dvd_fact p_gt_0 h₃, have h₅ : p ∣ 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) h₄, have h₆ : p ≤ 1, from le_of_dvd zero_lt_one h₅, absurd (le.trans p_ge_2 h₆) dec_trivial), subtype.tag p (and.intro p_ge_n prime_p) lemma ex_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p := ex_of_sub (infinite_primes n) lemma odd_of_prime {p : nat} : prime p → p > 2 → odd p := λ pp p_gt_2, by_contradiction (λ hn, have even_p : even p, from even_of_not_odd hn, obtain k (hk : p = 2*k), from exists_of_even even_p, assert two_div_p : 2 ∣ p, by rewrite [hk]; apply dvd_mul_right, or.elim (eq_one_or_eq_self_of_prime_of_dvd pp two_div_p) (λ h : 2 = 1, absurd h dec_trivial) (λ h : 2 = p, by subst h; exact absurd p_gt_2 !lt.irrefl)) theorem dvd_of_prime_of_not_coprime {p n : ℕ} (primep : prime p) (nc : ¬ coprime p n) : p ∣ n := have H : gcd p n = 1 ∨ gcd p n = p, from eq_one_or_eq_self_of_prime_of_dvd primep !gcd_dvd_left, or_resolve_right H nc ▸ !gcd_dvd_right theorem coprime_of_prime_of_not_dvd {p n : ℕ} (primep : prime p) (npdvdn : ¬ p ∣ n) : coprime p n := by_contradiction (assume nc : ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep nc)) theorem not_dvd_of_prime_of_coprime {p n : ℕ} (primep : prime p) (cop : coprime p n) : ¬ p ∣ n := assume pdvdn : p ∣ n, have H1 : p ∣ gcd p n, from dvd_gcd !dvd.refl pdvdn, have H2 : p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) H1, have H3 : 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ H2), show false, from !not_succ_le_self H3 theorem not_coprime_of_prime_dvd {p n : ℕ} (primep : prime p) (pdvdn : p ∣ n) : ¬ coprime p n := assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn theorem dvd_of_prime_of_dvd_mul_left {p m n : ℕ} (primep : prime p) (Hmn : p ∣ m * n) (Hm : ¬ p ∣ m) : p ∣ n := have copm : coprime p m, from coprime_of_prime_of_not_dvd primep Hm, show p ∣ n, from dvd_of_coprime_of_dvd_mul_left copm Hmn theorem dvd_of_prime_of_dvd_mul_right {p m n : ℕ} (primep : prime p) (Hmn : p ∣ m * n) (Hn : ¬ p ∣ n) : p ∣ m := dvd_of_prime_of_dvd_mul_left primep (!mul.comm ▸ Hmn) Hn theorem not_dvd_mul_of_prime {p m n : ℕ} (primep : prime p) (Hm : ¬ p ∣ m) (Hn : ¬ p ∣ n) : ¬ p ∣ m * n := assume Hmn, Hm (dvd_of_prime_of_dvd_mul_right primep Hmn Hn) lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p ∣ m * n → p ∣ m ∨ p ∣ n := λ h₁ h₂, by_cases (assume h : p ∣ m, or.inl h) (assume h : ¬ p ∣ m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ h)) lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p ∣ m^n → p ∣ m | 0 hp hd := assert peq1 : p = 1, from eq_one_of_dvd_one hd, have h₂ : 1 ≥ 2, by rewrite -peq1; apply ge_two_of_prime hp, absurd h₂ dec_trivial | (succ n) hp hd := have hd₁ : p ∣ (m^n)*m, by rewrite [pow_succ at hd]; exact hd, or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp hd₁) (λ h : p ∣ m^n, dvd_of_prime_of_dvd_pow hp h) (λ h : p ∣ m, h) lemma coprime_pow_of_prime_of_not_dvd {p m a : nat} : prime p → ¬ p ∣ a → coprime a (p^m) := λ h₁ h₂, coprime_pow_right m (coprime_swap (coprime_of_prime_of_not_dvd h₁ h₂)) lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q := λ hp hq hn, assert d₁ : gcd p q ∣ p, from !gcd_dvd_left, assert d₂ : gcd p q ∣ q, from !gcd_dvd_right, or.elim (eq_one_or_eq_self_of_prime_of_dvd hp d₁) (λ h : gcd p q = 1, h) (λ h : gcd p q = p, have d₃ : p ∣ q, by rewrite -h; exact d₂, or.elim (eq_one_or_eq_self_of_prime_of_dvd hq d₃) (λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one) (λ he : p = q, by contradiction)) lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) := λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn)) lemma coprime_or_dvd_of_prime {p} (Pp : prime p) (i : nat) : coprime p i ∨ p ∣ i := by_cases (λ h : p ∣ i, or.inr h) (λ h : ¬ p ∣ i, or.inl (coprime_of_prime_of_not_dvd Pp h)) lemma eq_one_or_dvd_of_dvd_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i ∣ (p^m) → i = 1 ∨ p ∣ i | 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end | (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i) (λ Pcp, begin rewrite [pow_succ], intro Pdvd, apply eq_one_or_dvd_of_dvd_prime_pow Pp, apply dvd_of_coprime_of_dvd_mul_right, apply coprime_swap Pcp, exact Pdvd end) (λ Pdvd, assume P, or.inr Pdvd) end nat