/- Copyright (c) 2015 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.category.strict Authors: Floris van Doorn, Jakob von Raumer -/ import .precategory .functor open is_trunc eq namespace category structure strict_precategory [class] (ob : Type) extends precategory ob := mk' :: (is_hset_ob : is_hset ob) attribute strict_precategory.is_hset_ob [instance] definition strict_precategory.mk [reducible] {ob : Type} (C : precategory ob) (H : is_hset ob) : strict_precategory ob := precategory.rec_on C strict_precategory.mk' H structure Strict_precategory : Type := (carrier : Type) (struct : strict_precategory carrier) attribute Strict_precategory.struct [instance] [coercion] definition Strict_precategory.to_Precategory [coercion] [reducible] (C : Strict_precategory) : Precategory := Precategory.mk (Strict_precategory.carrier C) C open functor definition precat_strict_precat : precategory Strict_precategory := precategory.mk (λ a b, functor a b) (λ a b c g f, functor.compose g f) (λ a, functor.id) (λ a b c d h g f, !functor.assoc) (λ a b f, !functor.id_left) (λ a b f, !functor.id_right) definition Precat_of_strict_precats := precategory.Mk precat_strict_precat namespace ops abbreviation SPreCat := Precat_of_strict_precats --attribute precat_strict_precat [instance] end ops end category /-section open decidable unit empty variables {A : Type} [H : decidable_eq A] include H definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty) theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _ definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c := decidable.rec_on (H b c) (λ Hbc g, decidable.rec_on (H a b) (λ Hab f, rec_on_true (trans Hab Hbc) ⋆) (λh f, empty.rec _ f) f) (λh (g : empty), empty.rec _ g) g omit H definition discrete_precategory (A : Type) [H : decidable_eq A] : precategory A := mk (λa b, set_hom a b) (λ a b c g f, set_compose g f) (λ a, decidable.rec_on_true rfl ⋆) (λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _) (λ a b f, @subsingleton.elim (set_hom a b) _ _ _) (λ a b f, @subsingleton.elim (set_hom a b) _ _ _) definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A) end section open unit bool definition category_one := discrete_category unit definition Category_one := Mk category_one definition category_two := discrete_category bool definition Category_two := Mk category_two end-/