/- Copyright (c) 2015 Jacob Gross. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jacob Gross, Jeremy Avigad The complex numbers. -/ import data.real open real eq.ops record complex : Type := (re : ℝ) (im : ℝ) notation `ℂ` := complex namespace complex variables (u w z : ℂ) variable n : ℕ protected proposition eq {z w : ℂ} (H1 : complex.re z = complex.re w) (H2 : complex.im z = complex.im w) : z = w := begin induction z, induction w, rewrite [H1, H2] end protected proposition eta (z : ℂ) : complex.mk (complex.re z) (complex.im z) = z := by cases z; exact rfl definition of_real [coercion] (x : ℝ) : ℂ := complex.mk x 0 definition of_rat [coercion] (q : ℚ) : ℂ := q definition of_int [coercion] (i : ℤ) : ℂ := i definition of_nat [coercion] (n : ℕ) : ℂ := n definition of_num [coercion] [reducible] (n : num) : ℂ := n protected definition prio : num := num.pred real.prio definition complex_has_zero [instance] [priority complex.prio] : has_zero ℂ := has_zero.mk (of_nat 0) definition complex_has_one [instance] [priority complex.prio] : has_one ℂ := has_one.mk (of_nat 1) theorem re_of_real (x : ℝ) : re (of_real x) = x := rfl theorem im_of_real (x : ℝ) : im (of_real x) = 0 := rfl protected definition add (z w : ℂ) : ℂ := complex.mk (complex.re z + complex.re w) (complex.im z + complex.im w) protected definition neg (z : ℂ) : ℂ := complex.mk (-(re z)) (-(im z)) protected definition mul (z w : ℂ) : ℂ := complex.mk (complex.re w * complex.re z - complex.im w * complex.im z) (complex.re w * complex.im z + complex.im w * complex.re z) /- notation -/ definition complex_has_add [instance] [priority complex.prio] : has_add complex := has_add.mk complex.add definition complex_has_neg [instance] [priority complex.prio] : has_neg complex := has_neg.mk complex.neg definition complex_has_mul [instance] [priority complex.prio] : has_mul complex := has_mul.mk complex.mul protected theorem add_def (z w : ℂ) : z + w = complex.mk (complex.re z + complex.re w) (complex.im z + complex.im w) := rfl protected theorem neg_def (z : ℂ) : -z = complex.mk (-(re z)) (-(im z)) := rfl protected theorem mul_def (z w : ℂ) : z * w = complex.mk (complex.re w * complex.re z - complex.im w * complex.im z) (complex.re w * complex.im z + complex.im w * complex.re z) := rfl -- TODO: what notation should we use for i? definition ii := complex.mk 0 1 theorem i_mul_i : ii * ii = -1 := rfl /- basic properties -/ protected theorem add_comm (w z : ℂ) : w + z = z + w := complex.eq !add.comm !add.comm protected theorem add_assoc (w z u : ℂ) : (w + z) + u = w + (z + u) := complex.eq !add.assoc !add.assoc protected theorem add_zero (z : ℂ) : z + 0 = z := complex.eq !add_zero !add_zero protected theorem zero_add (z : ℂ) : 0 + z = z := !complex.add_comm ▸ !complex.add_zero definition smul (x : ℝ) (z : ℂ) : ℂ := complex.mk (x*re z) (x*im z) protected theorem add_right_inv : z + - z = 0 := complex.eq !add.right_inv !add.right_inv protected theorem add_left_inv : - z + z = 0 := !complex.add_comm ▸ !complex.add_right_inv protected theorem mul_comm : w * z = z * w := by rewrite [*complex.mul_def, *mul.comm (re w), *mul.comm (im w), add.comm] protected theorem one_mul : 1 * z = z := by krewrite [complex.mul_def, *mul_one, *mul_zero, sub_zero, zero_add, complex.eta] protected theorem mul_one : z * 1 = z := !complex.mul_comm ▸ !complex.one_mul protected theorem left_distrib : u * (w + z) = u * w + u * z := begin rewrite [*complex.mul_def, *complex.add_def, ▸*, *right_distrib, -sub_sub, *sub_eq_add_neg], rewrite [*add.assoc, add.left_comm (re z * im u), add.left_comm (-_)] end protected theorem right_distrib : (u + w) * z = u * z + w * z := by rewrite [*complex.mul_comm _ z, complex.left_distrib] protected theorem mul_assoc : (u * w) * z = u * (w * z) := begin rewrite [*complex.mul_def, ▸*, *sub_eq_add_neg, *left_distrib, *right_distrib, *neg_add], rewrite [-*neg_mul_eq_neg_mul, -*neg_mul_eq_mul_neg, *add.assoc, *mul.assoc], rewrite [add.comm (-(im z * (im w * _))), add.comm (-(im z * (im w * _))), *add.assoc] end theorem re_add (z w : ℂ) : re (z + w) = re z + re w := rfl theorem im_add (z w : ℂ) : im (z + w) = im z + im w := rfl /- coercions -/ theorem of_real_add (a b : ℝ) : of_real (a + b) = of_real a + of_real b := rfl theorem of_real_mul (a b : ℝ) : of_real (a * b) = (of_real a) * (of_real b) := by rewrite [complex.mul_def, *re_of_real, *im_of_real, *mul_zero, *zero_mul, sub_zero, add_zero, mul.comm] theorem of_real_neg (a : ℝ) : of_real (-a) = -(of_real a) := rfl theorem of_real.inj {a b : ℝ} (H : of_real a = of_real b) : a = b := show re (of_real a) = re (of_real b), from congr_arg re H theorem eq_of_of_real_eq_of_real {a b : ℝ} (H : of_real a = of_real b) : a = b := of_real.inj H theorem of_real_eq_of_real_iff (a b : ℝ) : of_real a = of_real b ↔ a = b := iff.intro eq_of_of_real_eq_of_real !congr_arg /- make complex an instance of ring -/ protected definition comm_ring [reducible] : comm_ring complex := begin fapply comm_ring.mk, exact complex.add, exact complex.add_assoc, exact 0, exact complex.zero_add, exact complex.add_zero, exact complex.neg, exact complex.add_left_inv, exact complex.add_comm, exact complex.mul, exact complex.mul_assoc, exact 1, apply complex.one_mul, apply complex.mul_one, apply complex.left_distrib, apply complex.right_distrib, apply complex.mul_comm end local attribute complex.comm_ring [instance] definition complex_has_sub [instance] [priority complex.prio] : has_sub complex := has_sub.mk has_sub.sub theorem of_real_sub (x y : ℝ) : of_real (x - y) = of_real x - of_real y := rfl /- complex modulus and conjugate-/ definition cmod (z : ℂ) : ℝ := (complex.re z) * (complex.re z) + (complex.im z) * (complex.im z) theorem cmod_zero : cmod 0 = 0 := rfl theorem cmod_of_real (x : ℝ) : cmod x = x * x := by rewrite [↑cmod, re_of_real, im_of_real, mul_zero, add_zero] theorem eq_zero_of_cmod_eq_zero {z : ℂ} (H : cmod z = 0) : z = 0 := have H1 : (complex.re z) * (complex.re z) + (complex.im z) * (complex.im z) = 0, from H, have H2 : complex.re z = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero H1, have H3 : complex.im z = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero (!add.comm ▸ H1), show z = 0, from complex.eq H2 H3 definition conj (z : ℂ) : ℂ := complex.mk (complex.re z) (-(complex.im z)) theorem conj_of_real {x : ℝ} : conj (of_real x) = of_real x := rfl theorem conj_add (z w : ℂ) : conj (z + w) = conj z + conj w := by rewrite [↑conj, *complex.add_def, ▸*, neg_add] theorem conj_mul (z w : ℂ) : conj (z * w) = conj z * conj w := by rewrite [↑conj, *complex.mul_def, ▸*, neg_mul_neg, neg_add, -neg_mul_eq_mul_neg, -neg_mul_eq_neg_mul] theorem conj_conj (z : ℂ) : conj (conj z) = z := by rewrite [↑conj, neg_neg, complex.eta] theorem mul_conj_eq_of_real_cmod (z : ℂ) : z * conj z = of_real (cmod z) := by rewrite [↑conj, ↑cmod, ↑of_real, complex.mul_def, ▸*, -*neg_mul_eq_neg_mul, sub_neg_eq_add, mul.comm (re z) (im z), add.right_inv] theorem cmod_conj (z : ℂ) : cmod (conj z) = cmod z := begin apply eq_of_of_real_eq_of_real, rewrite [-*mul_conj_eq_of_real_cmod, conj_conj, mul.comm] end theorem cmod_mul (z w : ℂ) : cmod (z * w) = cmod z * cmod w := begin apply eq_of_of_real_eq_of_real, rewrite [of_real_mul, -*mul_conj_eq_of_real_cmod, conj_mul, *mul.assoc, mul.left_comm w] end protected noncomputable definition inv (z : ℂ) : complex := conj z * of_real (cmod z)⁻¹ protected noncomputable definition complex_has_inv [instance] [priority complex.prio] : has_inv complex := has_inv.mk complex.inv protected theorem inv_def (z : ℂ) : z⁻¹ = conj z * of_real (cmod z)⁻¹ := rfl protected theorem inv_zero : 0⁻¹ = (0 : ℂ) := by krewrite [complex.inv_def, conj_of_real, zero_mul] theorem of_real_inv (x : ℝ) : of_real x⁻¹ = (of_real x)⁻¹ := classical.by_cases (assume H : x = 0, by krewrite [H, inv_zero, complex.inv_zero]) (assume H : x ≠ 0, by rewrite [complex.inv_def, cmod_of_real, conj_of_real, mul_inv_eq H H, -of_real_mul, -mul.assoc, mul_inv_cancel H, one_mul]) noncomputable protected definition div (z w : ℂ) : ℂ := z * w⁻¹ noncomputable definition complex_has_div [instance] [priority complex.prio] : has_div complex := has_div.mk complex.div protected theorem div_def (z w : ℂ) : z / w = z * w⁻¹ := rfl theorem of_real_div (x y : ℝ) : of_real (x / y) = of_real x / of_real y := have H : x / y = x * y⁻¹, from rfl, by rewrite [H, complex.div_def, of_real_mul, of_real_inv] theorem conj_inv (z : ℂ) : (conj z)⁻¹ = conj (z⁻¹) := by rewrite [*complex.inv_def, conj_mul, *conj_conj, conj_of_real, cmod_conj] protected theorem mul_inv_cancel {z : ℂ} (H : z ≠ 0) : z * z⁻¹ = 1 := by rewrite [complex.inv_def, -mul.assoc, mul_conj_eq_of_real_cmod, -of_real_mul, mul_inv_cancel (assume H', H (eq_zero_of_cmod_eq_zero H'))] protected theorem inv_mul_cancel {z : ℂ} (H : z ≠ 0) : z⁻¹ * z = 1 := !mul.comm ▸ complex.mul_inv_cancel H protected noncomputable definition has_decidable_eq : decidable_eq ℂ := take z w, classical.prop_decidable (z = w) protected theorem zero_ne_one : (0 : ℂ) ≠ 1 := assume H, zero_ne_one (eq_of_of_real_eq_of_real H) protected noncomputable definition discrete_field [trans_instance] : discrete_field ℂ := ⦃ discrete_field, complex.comm_ring, mul_inv_cancel := @complex.mul_inv_cancel, inv_mul_cancel := @complex.inv_mul_cancel, zero_ne_one := complex.zero_ne_one, inv_zero := complex.inv_zero, has_decidable_eq := complex.has_decidable_eq ⦄ -- TODO : we still need the whole family of coercion properties, for nat, int, rat -- coercions theorem of_rat_eq (a : ℚ) : of_rat a = of_real (real.of_rat a) := rfl theorem of_int_eq (a : ℤ) : of_int a = of_real (real.of_int a) := rfl theorem of_nat_eq (a : ℕ) : of_nat a = of_real (real.of_nat a) := rfl theorem of_rat.inj {x y : ℚ} (H : of_rat x = of_rat y) : x = y := real.of_rat.inj (of_real.inj H) theorem eq_of_of_rat_eq_of_rat {x y : ℚ} (H : of_rat x = of_rat y) : x = y := of_rat.inj H theorem of_rat_eq_of_rat_iff (x y : ℚ) : of_rat x = of_rat y ↔ x = y := iff.intro eq_of_of_rat_eq_of_rat !congr_arg theorem of_int.inj {a b : ℤ} (H : of_int a = of_int b) : a = b := rat.of_int.inj (of_rat.inj H) theorem eq_of_of_int_eq_of_int {a b : ℤ} (H : of_int a = of_int b) : a = b := of_int.inj H theorem of_int_eq_of_int_iff (a b : ℤ) : of_int a = of_int b ↔ a = b := iff.intro of_int.inj !congr_arg theorem of_nat.inj {a b : ℕ} (H : of_nat a = of_nat b) : a = b := int.of_nat.inj (of_int.inj H) theorem eq_of_of_nat_eq_of_nat {a b : ℕ} (H : of_nat a = of_nat b) : a = b := of_nat.inj H theorem of_nat_eq_of_nat_iff (a b : ℕ) : of_nat a = of_nat b ↔ a = b := iff.intro of_nat.inj !congr_arg open rat theorem of_rat_add (a b : ℚ) : of_rat (a + b) = of_rat a + of_rat b := by rewrite [of_rat_eq] theorem of_rat_neg (a : ℚ) : of_rat (-a) = -of_rat a := by rewrite [of_rat_eq] -- these show why we have to use krewrite in the next theorem: there are -- two different instances of "has_mul". -- set_option pp.notation false -- set_option pp.coercions true -- set_option pp.implicit true theorem of_rat_mul (a b : ℚ) : of_rat (a * b) = of_rat a * of_rat b := by krewrite [of_rat_eq, real.of_rat_mul, of_real_mul] open int theorem of_int_add (a b : ℤ) : of_int (a + b) = of_int a + of_int b := by krewrite [of_int_eq, real.of_int_add, of_real_add] theorem of_int_neg (a : ℤ) : of_int (-a) = -of_int a := by krewrite [of_int_eq, real.of_int_neg, of_real_neg] theorem of_int_mul (a b : ℤ) : of_int (a * b) = of_int a * of_int b := by krewrite [of_int_eq, real.of_int_mul, of_real_mul] open nat theorem of_nat_add (a b : ℕ) : of_nat (a + b) = of_nat a + of_nat b := by krewrite [of_nat_eq, real.of_nat_add, of_real_add] theorem of_nat_mul (a b : ℕ) : of_nat (a * b) = of_nat a * of_nat b := by krewrite [of_nat_eq, real.of_nat_mul, of_real_mul] end complex