/- Copyright (c) 2014 Robert Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Lewis -/ import algebra.ordered_ring algebra.field open eq eq.ops namespace algebra structure linear_ordered_field [class] (A : Type) extends linear_ordered_ring A, field A section linear_ordered_field variable {A : Type} variables [s : linear_ordered_field A] {a b c d : A} include s -- helpers for following theorem mul_zero_lt_mul_inv_of_pos (H : 0 < a) : a * 0 < a * (1 / a) := calc a * 0 = 0 : mul_zero ... < 1 : zero_lt_one ... = a * a⁻¹ : mul_inv_cancel (ne.symm (ne_of_lt H)) ... = a * (1 / a) : inv_eq_one_div theorem mul_zero_lt_mul_inv_of_neg (H : a < 0) : a * 0 < a * (1 / a) := calc a * 0 = 0 : mul_zero ... < 1 : zero_lt_one ... = a * a⁻¹ : mul_inv_cancel (ne_of_lt H) ... = a * (1 / a) : inv_eq_one_div theorem div_pos_of_pos (H : 0 < a) : 0 < 1 / a := lt_of_mul_lt_mul_left (mul_zero_lt_mul_inv_of_pos H) (le_of_lt H) theorem div_neg_of_neg (H : a < 0) : 1 / a < 0 := gt_of_mul_lt_mul_neg_left (mul_zero_lt_mul_inv_of_neg H) (le_of_lt H) theorem le_mul_of_ge_one_right (Hb : b ≥ 0) (H : a ≥ 1) : b ≤ b * a := mul_one _ ▸ (mul_le_mul_of_nonneg_left H Hb) theorem lt_mul_of_gt_one_right (Hb : b > 0) (H : a > 1) : b < b * a := mul_one _ ▸ (mul_lt_mul_of_pos_left H Hb) theorem one_le_div_iff_le (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a := have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb), iff.intro (assume H : 1 ≤ a / b, calc b = b : refl ... ≤ b * (a / b) : le_mul_of_ge_one_right (le_of_lt Hb) H ... = a : mul_div_cancel' Hb') (assume H : b ≤ a, have Hbinv : 1 / b > 0, from div_pos_of_pos Hb, calc 1 = b * (1 / b) : mul_one_div_cancel Hb' ... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv) ... = a / b : div_eq_mul_one_div) theorem le_of_one_le_div (Hb : b > 0) (H : 1 ≤ a / b) : b ≤ a := (iff.mp (one_le_div_iff_le Hb)) H theorem one_le_div_of_le (Hb : b > 0) (H : b ≤ a) : 1 ≤ a / b := (iff.mpr (one_le_div_iff_le Hb)) H theorem one_lt_div_iff_lt (Hb : b > 0) : 1 < a / b ↔ b < a := have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb), iff.intro (assume H : 1 < a / b, calc b < b * (a / b) : lt_mul_of_gt_one_right Hb H ... = a : mul_div_cancel' Hb') (assume H : b < a, have Hbinv : 1 / b > 0, from div_pos_of_pos Hb, calc 1 = b * (1 / b) : mul_one_div_cancel Hb' ... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv ... = a / b : div_eq_mul_one_div) theorem lt_of_one_lt_div (Hb : b > 0) (H : 1 < a / b) : b < a := (iff.mp (one_lt_div_iff_lt Hb)) H theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b := (iff.mpr (one_lt_div_iff_lt Hb)) H theorem exists_lt : ∃ x, x < a := have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one, exists.intro _ H theorem exists_gt : ∃ x, x > a := have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one, exists.intro _ H -- the following theorems amount to four iffs, for <, ≤, ≥, >. theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b := div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc) theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c := calc a = a * c * (1 / c) : mul_mul_div (ne.symm (ne_of_lt Hc)) ... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right H (le_of_lt (div_pos_of_pos Hc)) ... = b / c : div_eq_mul_one_div theorem mul_lt_of_lt_div (Hc : 0 < c) (H : a < b / c) : a * c < b := div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_lt_mul_of_pos_right H Hc theorem lt_div_of_mul_lt (Hc : 0 < c) (H : a * c < b) : a < b / c := calc a = a * c * (1 / c) : mul_mul_div (ne.symm (ne_of_lt Hc)) ... < b * (1 / c) : mul_lt_mul_of_pos_right H (div_pos_of_pos Hc) ... = b / c : div_eq_mul_one_div theorem mul_le_of_ge_div_neg (Hc : c < 0) (H : a ≥ b / c) : a * c ≤ b := div_mul_cancel (ne_of_lt Hc) ▸ mul_le_mul_of_nonpos_right H (le_of_lt Hc) theorem ge_div_of_mul_le_neg (Hc : c < 0) (H : a * c ≤ b) : a ≥ b / c := calc a = a * c * (1 / c) : mul_mul_div (ne_of_lt Hc) ... ≥ b * (1 / c) : mul_le_mul_of_nonpos_right H (le_of_lt (div_neg_of_neg Hc)) ... = b / c : div_eq_mul_one_div theorem mul_lt_of_gt_div_neg (Hc : c < 0) (H : a > b / c) : a * c < b := div_mul_cancel (ne_of_lt Hc) ▸ mul_lt_mul_of_neg_right H Hc theorem gt_div_of_mul_gt_neg (Hc : c < 0) (H : a * c < b) : a > b / c := calc a = a * c * (1 / c) : mul_mul_div (ne_of_lt Hc) ... > b * (1 / c) : mul_lt_mul_of_neg_right H (div_neg_of_neg Hc) ... = b / c : div_eq_mul_one_div ----- theorem div_le_of_le_mul (Hb : b > 0) (H : a ≤ b * c) : a / b ≤ c := calc a / b = a * (1 / b) : div_eq_mul_one_div ... ≤ (b * c) * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt (div_pos_of_pos Hb)) ... = (b * c) / b : div_eq_mul_one_div ... = c : mul_div_cancel_left (ne.symm (ne_of_lt Hb)) theorem le_mul_of_div_le (Hc : c > 0) (H : a / c ≤ b) : a ≤ b * c := calc a = a / c * c : div_mul_cancel (ne.symm (ne_of_lt Hc)) ... ≤ b * c : mul_le_mul_of_nonneg_right H (le_of_lt Hc) -- following these in the isabelle file, there are 8 biconditionals for the above with - signs -- skipping for now theorem mul_sub_mul_div_mul_neg (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c < b / d) : (a * d - b * c) / (c * d) < 0 := have H1 : a / c - b / d < 0, from calc a / c - b / d < b / d - b / d : sub_lt_sub_right H ... = 0 : sub_self, calc 0 > a / c - b / d : H1 ... = (a * d - c * b) / (c * d) : div_sub_div Hc Hd ... = (a * d - b * c) / (c * d) : mul.comm theorem mul_sub_mul_div_mul_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c ≤ b / d) : (a * d - b * c) / (c * d) ≤ 0 := have H1 : a / c - b / d ≤ 0, from calc a / c - b / d ≤ b / d - b / d : sub_le_sub_right H ... = 0 : sub_self, calc 0 ≥ a / c - b / d : H1 ... = (a * d - c * b) / (c * d) : div_sub_div Hc Hd ... = (a * d - b * c) / (c * d) : mul.comm theorem div_lt_div_of_mul_sub_mul_div_neg (Hc : c ≠ 0) (Hd : d ≠ 0) (H : (a * d - b * c) / (c * d) < 0) : a / c < b / d := assert H1 : (a * d - c * b) / (c * d) < 0, by rewrite [mul.comm c b]; exact H, assert H2 : a / c - b / d < 0, by rewrite [div_sub_div Hc Hd]; exact H1, assert H3 : a / c - b / d + b / d < 0 + b / d, from add_lt_add_right H2 _, begin rewrite [zero_add at H3, neg_add_cancel_right at H3], exact H3 end theorem div_le_div_of_mul_sub_mul_div_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0) (H : (a * d - b * c) / (c * d) ≤ 0) : a / c ≤ b / d := assert H1 : (a * d - c * b) / (c * d) ≤ 0, by rewrite [mul.comm c b]; exact H, assert H2 : a / c - b / d ≤ 0, by rewrite [div_sub_div Hc Hd]; exact H1, assert H3 : a / c - b / d + b / d ≤ 0 + b / d, from add_le_add_right H2 _, begin rewrite [zero_add at H3, neg_add_cancel_right at H3], exact H3 end theorem pos_div_of_pos_of_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a / b := begin rewrite div_eq_mul_one_div, apply mul_pos, exact Ha, apply div_pos_of_pos, exact Hb end theorem nonneg_div_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 ≤ a / b := begin rewrite div_eq_mul_one_div, apply mul_nonneg, exact Ha, apply le_of_lt, apply div_pos_of_pos, exact Hb end theorem neg_div_of_neg_of_pos (Ha : a < 0) (Hb : 0 < b) : a / b < 0:= begin rewrite div_eq_mul_one_div, apply mul_neg_of_neg_of_pos, exact Ha, apply div_pos_of_pos, exact Hb end theorem nonpos_div_of_nonpos_of_pos (Ha : a ≤ 0) (Hb : 0 < b) : a / b ≤ 0 := begin rewrite div_eq_mul_one_div, apply mul_nonpos_of_nonpos_of_nonneg, exact Ha, apply le_of_lt, apply div_pos_of_pos, exact Hb end theorem neg_div_of_pos_of_neg (Ha : 0 < a) (Hb : b < 0) : a / b < 0 := begin rewrite div_eq_mul_one_div, apply mul_neg_of_pos_of_neg, exact Ha, apply div_neg_of_neg, exact Hb end theorem nonpos_div_of_nonneg_of_neg (Ha : 0 ≤ a) (Hb : b < 0) : a / b ≤ 0 := begin rewrite div_eq_mul_one_div, apply mul_nonpos_of_nonneg_of_nonpos, exact Ha, apply le_of_lt, apply div_neg_of_neg, exact Hb end theorem pos_div_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a / b := begin rewrite div_eq_mul_one_div, apply mul_pos_of_neg_of_neg, exact Ha, apply div_neg_of_neg, exact Hb end theorem nonneg_div_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : 0 ≤ a / b := begin rewrite div_eq_mul_one_div, apply mul_nonneg_of_nonpos_of_nonpos, exact Ha, apply le_of_lt, apply div_neg_of_neg, exact Hb end theorem div_lt_div_of_lt_of_pos (H : a < b) (Hc : 0 < c) : a / c < b / c := begin rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div], exact mul_lt_mul_of_pos_right H (div_pos_of_pos Hc) end theorem div_lt_div_of_lt_of_neg (H : b < a) (Hc : c < 0) : a / c < b / c := begin rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div], exact mul_lt_mul_of_neg_right H (div_neg_of_neg Hc) end theorem two_ne_zero : (1 : A) + 1 ≠ 0 := ne.symm (ne_of_lt (add_pos zero_lt_one zero_lt_one)) notation 2 := 1 + 1 theorem add_halves : a / 2 + a / 2 = a := calc a / 2 + a / 2 = (a + a) / 2 : by rewrite div_add_div_same ... = (a * 1 + a * 1) / 2 : by rewrite mul_one ... = (a * 2) / 2 : by rewrite left_distrib ... = a : by rewrite [@mul_div_cancel A _ _ _ two_ne_zero] theorem nonneg_le_nonneg_of_squares_le (Ha : a ≥ 0) (Hb : b ≥ 0) (H : a * a ≤ b * b) : a ≤ b := begin apply le_of_not_gt, intro Hab, let Hposa := lt_of_le_of_lt Hb Hab, let H' := calc b * b ≤ a * b : mul_le_mul_of_nonneg_right (le_of_lt Hab) Hb ... < a * a : mul_lt_mul_of_pos_left Hab Hposa, apply (not_le_of_gt H') H end theorem div_two : (a + a) / 2 = a := symm (iff.mpr (eq_div_iff_mul_eq (ne_of_gt (add_pos zero_lt_one zero_lt_one))) (by rewrite [left_distrib, *mul_one])) theorem mul_le_mul_of_mul_div_le (H : a * (b / c) ≤ d) (Hc : c > 0) : b * a ≤ d * c := begin rewrite [-mul_div_assoc at H, mul.comm b], apply le_mul_of_div_le Hc H end theorem div_two_lt_of_pos (H : a > 0) : a / (1 + 1) < a := have Ha : a / (1 + 1) > 0, from pos_div_of_pos_of_pos H (add_pos zero_lt_one zero_lt_one), calc a / (1 + 1) < a / (1 + 1) + a / (1 + 1) : lt_add_of_pos_left Ha ... = a : add_halves end linear_ordered_field structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A, decidable_linear_ordered_comm_ring A := (inv_zero : inv zero = zero) section discrete_linear_ordered_field variable {A : Type} variables [s : discrete_linear_ordered_field A] {a b c : A} include s definition dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) := take x y, decidable.by_cases (assume H : x < y, decidable.inr (ne_of_lt H)) (assume H : ¬ x < y, decidable.by_cases (assume H' : y < x, decidable.inr (ne.symm (ne_of_lt H'))) (assume H' : ¬ y < x, decidable.inl (le.antisymm (le_of_not_gt H') (le_of_not_gt H)))) definition discrete_linear_ordered_field.to_discrete_field [trans-instance] [reducible] [coercion] : discrete_field A := ⦃ discrete_field, s, has_decidable_eq := dec_eq_of_dec_lt⦄ theorem pos_of_div_pos (H : 0 < 1 / a) : 0 < a := have H1 : 0 < 1 / (1 / a), from div_pos_of_pos H, have H2 : 1 / a ≠ 0, from (assume H3 : 1 / a = 0, have H4 : 1 / (1 / a) = 0, from H3⁻¹ ▸ div_zero, absurd H4 (ne.symm (ne_of_lt H1))), (div_div (ne_zero_of_one_div_ne_zero H2)) ▸ H1 theorem neg_of_div_neg (H : 1 / a < 0) : a < 0 := have H1 : 0 < - (1 / a), from neg_pos_of_neg H, have Ha : a ≠ 0, from ne_zero_of_one_div_ne_zero (ne_of_lt H), have H2 : 0 < 1 / (-a), from (one_div_neg_eq_neg_one_div Ha)⁻¹ ▸ H1, have H3 : 0 < -a, from pos_of_div_pos H2, neg_of_neg_pos H3 -- why is mul_le_mul under ordered_ring namespace? theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a := have Hb : 0 < b, from pos_of_div_pos (calc 0 < 1 / a : div_pos_of_pos H ... ≤ 1 / b : Hl), have H' : 1 ≤ a / b, from (calc 1 = a / a : div_self (ne.symm (ne_of_lt H)) ... = a * (1 / a) : div_eq_mul_one_div ... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H) ... = a / b : div_eq_mul_one_div ), le_of_one_le_div Hb H' theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a := assert Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc 1 / a ≤ 1 / b : Hl ... < 0 : div_neg_of_neg H)), have H' : -b > 0, from neg_pos_of_neg H, have Hl' : - (1 / b) ≤ - (1 / a), from neg_le_neg Hl, have Hl'' : 1 / - b ≤ 1 / - a, from calc 1 / -b = - (1 / b) : by rewrite [one_div_neg_eq_neg_one_div (ne_of_lt H)] ... ≤ - (1 / a) : Hl' ... = 1 / -a : by rewrite [one_div_neg_eq_neg_one_div Ha], le_of_neg_le_neg (le_of_div_le H' Hl'') theorem lt_of_div_lt (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a := have Hb : 0 < b, from pos_of_div_pos (calc 0 < 1 / a : div_pos_of_pos H ... < 1 / b : Hl), have H : 1 < a / b, from (calc 1 = a / a : div_self (ne.symm (ne_of_lt H)) ... = a * (1 / a) : div_eq_mul_one_div ... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H ... = a / b : div_eq_mul_one_div), lt_of_one_lt_div Hb H theorem lt_of_div_lt_neg (H : b < 0) (Hl : 1 / a < 1 / b) : b < a := have H1 : b ≤ a, from le_of_div_le_neg H (le_of_lt Hl), have Hn : b ≠ a, from (assume Hn' : b = a, have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _, absurd Hl' (ne_of_lt Hl)), lt_of_le_of_ne H1 Hn theorem div_lt_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a := lt_of_not_ge (assume H', absurd H (not_lt_of_ge (le_of_div_le Ha H'))) theorem div_le_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a := le_of_not_gt (assume H', absurd H (not_le_of_gt (lt_of_div_lt Ha H'))) theorem div_lt_div_of_lt_neg (Hb : b < 0) (H : a < b) : 1 / b < 1 / a := lt_of_not_ge (assume H', absurd H (not_lt_of_ge (le_of_div_le_neg Hb H'))) theorem div_le_div_of_le_neg (Hb : b < 0) (H : a ≤ b) : 1 / b ≤ 1 / a := le_of_not_gt (assume H', absurd H (not_le_of_gt (lt_of_div_lt_neg Hb H'))) theorem one_lt_div (H1 : 0 < a) (H2 : a < 1) : 1 < 1 / a := one_div_one ▸ div_lt_div_of_lt H1 H2 theorem one_le_div (H1 : 0 < a) (H2 : a ≤ 1) : 1 ≤ 1 / a := one_div_one ▸ div_le_div_of_le H1 H2 theorem neg_one_lt_div_neg (H1 : a < 0) (H2 : -1 < a) : 1 / a < -1 := one_div_neg_one_eq_neg_one ▸ div_lt_div_of_lt_neg H1 H2 theorem neg_one_le_div_neg (H1 : a < 0) (H2 : -1 ≤ a) : 1 / a ≤ -1 := one_div_neg_one_eq_neg_one ▸ div_le_div_of_le_neg H1 H2 theorem div_lt_div_of_pos_of_lt_of_pos (Hb : 0 < b) (H : b < a) (Hc : 0 < c) : c / a < c / b := begin apply iff.mp (sub_neg_iff_lt _ _), rewrite [div_eq_mul_one_div, {c / b}div_eq_mul_one_div], rewrite -mul_sub_left_distrib, apply mul_neg_of_pos_of_neg, exact Hc, apply iff.mpr (sub_neg_iff_lt _ _), apply div_lt_div_of_lt, exact Hb, exact H end theorem abs_one_div : abs (1 / a) = 1 / abs a := if H : a > 0 then by rewrite [abs_of_pos H, abs_of_pos (div_pos_of_pos H)] else (if H' : a < 0 then by rewrite [abs_of_neg H', abs_of_neg (div_neg_of_neg H'), -(one_div_neg_eq_neg_one_div (ne_of_lt H'))] else have Heq [visible] : a = 0, from eq_of_le_of_ge (le_of_not_gt H) (le_of_not_gt H'), by rewrite [Heq, div_zero, *abs_zero, div_zero]) theorem ge_sub_of_abs_sub_le_left (H : abs (a - b) ≤ c) : a ≥ b - c := if Hz : 0 ≤ a - b then (calc a ≥ b : (iff.mp !sub_nonneg_iff_le) Hz ... ≥ b - c : sub_le_of_nonneg _ _ (le.trans !abs_nonneg H)) else (have Habs : b - a ≤ c, by rewrite [abs_of_neg (lt_of_not_ge Hz) at H, neg_sub at H]; apply H, have Habs' : b ≤ c + a, from (iff.mpr !le_add_iff_sub_right_le) Habs, (iff.mp !le_add_iff_sub_left_le) Habs') theorem ge_sub_of_abs_sub_le_right (H : abs (a - b) ≤ c) : b ≥ a - c := ge_sub_of_abs_sub_le_left (!abs_sub ▸ H) theorem abs_sub_square : abs (a - b) * abs (a - b) = a * a + b * b - 2 * a * b := by rewrite [abs_mul_self, *mul_sub_left_distrib, *mul_sub_right_distrib, sub_add_eq_sub_sub, sub_neg_eq_add, *right_distrib, sub_add_eq_sub_sub, *one_mul, *add.assoc, {_ + b * b}add.comm, {_ + (b * b + _)}add.comm, mul.comm b a, *add.assoc] end discrete_linear_ordered_field end algebra