/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.num Author: Leonardo de Moura -/ import logic.eq open bool namespace pos_num theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff := pos_num.induction_on a rfl (take n iH, rfl) (take n iH, rfl) theorem pred.succ (a : pos_num) : pred (succ a) = a := pos_num.rec_on a rfl (take (n : pos_num) (iH : pred (succ n) = n), calc pred (succ (bit1 n)) = cond (is_one (succ n)) one (bit1 (pred (succ n))) : rfl ... = cond ff one (bit1 (pred (succ n))) : succ_not_is_one ... = bit1 (pred (succ n)) : rfl ... = bit1 n : iH) (take (n : pos_num) (iH : pred (succ n) = n), rfl) section variables (a b : pos_num) theorem add.one_one : one + one = bit0 one := rfl theorem add.one_bit0 : one + (bit0 a) = bit1 a := rfl theorem add.one_bit1 : one + (bit1 a) = succ (bit1 a) := rfl theorem add.bit0_one : (bit0 a) + one = bit1 a := rfl theorem add.bit1_one : (bit1 a) + one = succ (bit1 a) := rfl theorem add.bit0_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) := rfl theorem add.bit0_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) := rfl theorem add.bit1_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) := rfl theorem add.bit1_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) := rfl end theorem mul.one_left (a : pos_num) : one * a = a := rfl theorem mul.one_right (a : pos_num) : a * one = a := pos_num.induction_on a rfl (take (n : pos_num) (iH : n * one = n), calc bit1 n * one = bit0 (n * one) + one : rfl ... = bit0 n + one : iH ... = bit1 n : add.bit0_one) (take (n : pos_num) (iH : n * one = n), calc bit0 n * one = bit0 (n * one) : rfl ... = bit0 n : iH) end pos_num