/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.sum Authors: Leonardo de Moura, Jeremy Avigad The sum type, aka disjoint union. -/ import logic.connectives open inhabited eq.ops notation A ⊎ B := sum A B namespace sum notation A + B := sum A B namespace low_precedence_plus reserve infixr `+`:25 -- conflicts with notation for addition infixr `+` := sum end low_precedence_plus variables {A B : Type} definition inl_ne_inr (a : A) (b : B) : inl a ≠ inr b := assume H, sum.no_confusion H definition inr_ne_inl (b : B) (a : A) : inr b ≠ inl a := assume H, sum.no_confusion H definition inl_inj {a₁ a₂ : A} : intro_left B a₁ = intro_left B a₂ → a₁ = a₂ := assume H, sum.no_confusion H (λe, e) definition inr_inj {b₁ b₂ : B} : intro_right A b₁ = intro_right A b₂ → b₁ = b₂ := assume H, sum.no_confusion H (λe, e) protected definition is_inhabited_left [instance] [h : inhabited A] : inhabited (A + B) := inhabited.mk (inl (default A)) protected definition is_inhabited_right [instance] [h : inhabited B] : inhabited (A + B) := inhabited.mk (inr (default B)) protected definition has_eq_decidable [instance] [h₁ : decidable_eq A] [h₂ : decidable_eq B] : ∀ s₁ s₂ : A + B, decidable (s₁ = s₂), has_eq_decidable (inl a₁) (inl a₂) := match h₁ a₁ a₂ with decidable.inl hp := decidable.inl (hp ▸ rfl), decidable.inr hn := decidable.inr (λ he, absurd (inl_inj he) hn) end, has_eq_decidable (inl a₁) (inr b₂) := decidable.inr (λ e, sum.no_confusion e), has_eq_decidable (inr b₁) (inl a₂) := decidable.inr (λ e, sum.no_confusion e), has_eq_decidable (inr b₁) (inr b₂) := match h₂ b₁ b₂ with decidable.inl hp := decidable.inl (hp ▸ rfl), decidable.inr hn := decidable.inr (λ he, absurd (inr_inj he) hn) end end sum