(* Nat library full of "holes". We provide only the proof skeletons, and let Lean infer the rest. *) Import kernel. Variable Nat : Type. Alias ℕ : Nat. Namespace Nat. Builtin numeral. Builtin add : Nat → Nat → Nat. Infixl 65 + : add. Builtin mul : Nat → Nat → Nat. Infixl 70 * : mul. Builtin le : Nat → Nat → Bool. Infix 50 <= : le. Infix 50 ≤ : le. Definition ge (a b : Nat) := b ≤ a. Infix 50 >= : ge. Infix 50 ≥ : ge. Definition lt (a b : Nat) := ¬ (a ≥ b). Infix 50 < : lt. Definition gt (a b : Nat) := ¬ (a ≤ b). Infix 50 > : gt. Definition id (a : Nat) := a. Notation 55 | _ | : id. Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b Axiom PlusZero (a : Nat) : a + 0 = a. Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1. Axiom MulZero (a : Nat) : a * 0 = 0. Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a. Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a. Theorem ZeroNeOne : 0 ≠ 1 := Trivial. Theorem ZeroPlus (a : Nat) : 0 + a = a := Induction (show 0 + 0 = 0, Trivial) (λ (n : Nat) (iH : 0 + n = n), calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc _ _ ... = n + 1 : { iH }) a. Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1 := Induction (calc (a + 1) + 0 = a + 1 : PlusZero _ ... = (a + 0) + 1 : { Symm (PlusZero _) }) (λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1), calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc _ _ ... = ((a + n) + 1) + 1 : { iH } ... = (a + (n + 1)) + 1 : { Symm (PlusSucc _ _) }) b. Theorem PlusComm (a b : Nat) : a + b = b + a := Induction (calc a + 0 = a : PlusZero a ... = 0 + a : Symm (ZeroPlus a)) (λ (n : Nat) (iH : a + n = n + a), calc a + (n + 1) = (a + n) + 1 : PlusSucc _ _ ... = (n + a) + 1 : { iH } ... = (n + 1) + a : Symm (SuccPlus _ _)) b. Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c := Induction (calc 0 + (b + c) = b + c : ZeroPlus _ ... = (0 + b) + c : { Symm (ZeroPlus _) }) (λ (n : Nat) (iH : n + (b + c) = (n + b) + c), calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus _ _ ... = ((n + b) + c) + 1 : { iH } ... = ((n + b) + 1) + c : Symm (SuccPlus _ _) ... = ((n + 1) + b) + c : { Symm (SuccPlus _ _) }) a. Theorem ZeroMul (a : Nat) : 0 * a = 0 := Induction (show 0 * 0 = 0, Trivial) (λ (n : Nat) (iH : 0 * n = 0), calc 0 * (n + 1) = (0 * n) + 0 : MulSucc _ _ ... = 0 + 0 : { iH } ... = 0 : Trivial) a. Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b := Induction (calc (a + 1) * 0 = 0 : MulZero _ ... = a * 0 : Symm (MulZero _) ... = a * 0 + 0 : Symm (PlusZero _)) (λ (n : Nat) (iH : (a + 1) * n = a * n + n), calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc _ _ ... = a * n + n + (a + 1) : { iH } ... = a * n + n + a + 1 : PlusAssoc _ _ _ ... = a * n + (n + a) + 1 : { Symm (PlusAssoc _ _ _) } ... = a * n + (a + n) + 1 : { PlusComm _ _ } ... = a * n + a + n + 1 : { PlusAssoc _ _ _ } ... = a * (n + 1) + n + 1 : { Symm (MulSucc _ _) } ... = a * (n + 1) + (n + 1) : Symm (PlusAssoc _ _ _)) b. Theorem OneMul (a : Nat) : 1 * a = a := Induction (show 1 * 0 = 0, Trivial) (λ (n : Nat) (iH : 1 * n = n), calc 1 * (n + 1) = 1 * n + 1 : MulSucc _ _ ... = n + 1 : { iH }) a. Theorem MulOne (a : Nat) : a * 1 = a := Induction (show 0 * 1 = 0, Trivial) (λ (n : Nat) (iH : n * 1 = n), calc (n + 1) * 1 = n * 1 + 1 : SuccMul _ _ ... = n + 1 : { iH }) a. Theorem MulComm (a b : Nat) : a * b = b * a := Induction (calc a * 0 = 0 : MulZero a ... = 0 * a : Symm (ZeroMul a)) (λ (n : Nat) (iH : a * n = n * a), calc a * (n + 1) = a * n + a : MulSucc _ _ ... = n * a + a : { iH } ... = (n + 1) * a : Symm (SuccMul _ _)) b. Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c := Induction (calc 0 * (b + c) = 0 : ZeroMul _ ... = 0 + 0 : Trivial ... = 0 * b + 0 : { Symm (ZeroMul _) } ... = 0 * b + 0 * c : { Symm (ZeroMul _) }) (λ (n : Nat) (iH : n * (b + c) = n * b + n * c), calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul _ _ ... = n * b + n * c + (b + c) : { iH } ... = n * b + n * c + b + c : PlusAssoc _ _ _ ... = n * b + (n * c + b) + c : { Symm (PlusAssoc _ _ _) } ... = n * b + (b + n * c) + c : { PlusComm _ _ } ... = n * b + b + n * c + c : { PlusAssoc _ _ _ } ... = (n + 1) * b + n * c + c : { Symm (SuccMul _ _) } ... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc _ _ _) ... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul _ _) }) a. Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c := calc (a + b) * c = c * (a + b) : MulComm _ _ ... = c * a + c * b : Distribute _ _ _ ... = a * c + c * b : { MulComm _ _ } ... = a * c + b * c : { MulComm _ _}. Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c := Induction (calc 0 * (b * c) = 0 : ZeroMul _ ... = 0 * c : Symm (ZeroMul _) ... = (0 * b) * c : { Symm (ZeroMul _) }) (λ (n : Nat) (iH : n * (b * c) = n * b * c), calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul _ _ ... = n * b * c + (b * c) : { iH } ... = (n * b + b) * c : Symm (Distribute2 _ _ _) ... = (n + 1) * b * c : { Symm (SuccMul _ _) }) a. SetOpaque ge true. SetOpaque lt true. SetOpaque gt true. SetOpaque id true. EndNamespace.