/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include "util/lua.h" #include "util/numerics/mpq.h" #include "kernel/expr.h" #include "kernel/builtin.h" namespace lean { /** \brief Real numbers type */ expr mk_real_type(); extern expr const Real; /** \brief Return the value of type Real that represents \c v. */ expr mk_real_value(mpq const & v); inline expr mk_real_value(int v) { return mk_real_value(mpq(v)); } inline expr rVal(int v) { return mk_real_value(v); } bool is_real_value(expr const & e); mpq const & real_value_numeral(expr const & e); /** \brief Addition, Real::add : Real -> Real -> Real */ expr mk_real_add_fn(); inline expr rAdd(expr const & e1, expr const & e2) { return mk_app(mk_real_add_fn(), e1, e2); } /** \brief Subtraction, Real::sub : Real -> Real -> Real */ expr mk_real_sub_fn(); inline expr rSub(expr const & e1, expr const & e2) { return mk_app(mk_real_sub_fn(), e1, e2); } /** \brief Unary minus, Real::neg : Real -> Real */ expr mk_real_neg_fn(); inline expr rNeg(expr const & e) { return mk_app(mk_real_neg_fn(), e); } /** \brief Multiplication, Real::mul : Real -> Real -> Real */ expr mk_real_mul_fn(); inline expr rMul(expr const & e1, expr const & e2) { return mk_app(mk_real_mul_fn(), e1, e2); } /** \brief Division, Real::mul : Real -> Real -> Real */ expr mk_real_div_fn(); inline expr rDiv(expr const & e1, expr const & e2) { return mk_app(mk_real_div_fn(), e1, e2); } /** \brief Absolute value function, Real::abs : Real -> Real */ expr mk_real_abs_fn(); inline expr rAbs(expr const & e) { return mk_app(mk_real_abs_fn(), e); } /** \brief Less than or equal to, Real::le : Real -> Real -> Bool */ expr mk_real_le_fn(); inline expr rLe(expr const & e1, expr const & e2) { return mk_app(mk_real_le_fn(), e1, e2); } /** \brief Greater than or equal to, Real::ge : Real -> Real -> Bool */ expr mk_real_ge_fn(); inline expr rGe(expr const & e1, expr const & e2) { return mk_app(mk_real_ge_fn(), e1, e2); } /** \brief Less than, Real::lt : Real -> Real -> Bool */ expr mk_real_lt_fn(); inline expr rLt(expr const & e1, expr const & e2) { return mk_app(mk_real_lt_fn(), e1, e2); } /** \brief Greater than, Real::gt : Real -> Real -> Bool */ expr mk_real_gt_fn(); inline expr rGt(expr const & e1, expr const & e2) { return mk_app(mk_real_gt_fn(), e1, e2); } /** \brief If-then-else for reals */ inline expr rIf(expr const & c, expr const & t, expr const & e) { return mk_if(Real, c, t, e); } class environment; /** \brief Import (basic) Real number library in the given environment (if it has not been imported already). */ void import_real(environment & env); /** \brief Coercion from int to real */ expr mk_int_to_real_fn(); inline expr i2r(expr const & e) { return mk_app(mk_int_to_real_fn(), e); } /** \brief Coercion from nat to real */ expr mk_nat_to_real_fn(); inline expr n2r(expr const & e) { return mk_app(mk_nat_to_real_fn(), e); } /** \brief Import the coercions \c i2r and \c n2r. The Integer and (basic) Real libraries are also imported. */ void import_int_to_real_coercions(environment & env); void open_real(lua_State * L); }