-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn import data.sigma.decl open inhabited eq.ops namespace sigma notation `dpr₁` := dpr1 notation `dpr₂` := dpr2 namespace ops postfix `.1`:10000 := dpr1 postfix `.2`:10000 := dpr2 notation `(` t:(foldr `;`:0 (e r, sigma.dpair e r)) `)` := t end ops open ops universe variables u v variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}} definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ( u.1 ; u.2)) : C u := destruct u (λx y H, H) H theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : dpair a₁ b₁ = dpair a₂ b₂ := dcongr_arg2 dpair H₁ H₂ theorem dpair_heq {a : A} {a' : A'} {b : B a} {b' : B' a'} (HB : B == B') (Ha : a == a') (Hb : b == b') : dpair a b == dpair a' b' := hcongr_arg4 @dpair (heq.type_eq Ha) HB Ha Hb protected theorem equal {p₁ p₂ : Σa : A, B a} : ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = dpr2 p₂), p₁ = p₂ := destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂)) protected theorem hequal {p : Σa : A, B a} {p' : Σa' : A', B' a'} (HB : B == B') : ∀(H₁ : dpr1 p == dpr1 p') (H₂ : dpr2 p == dpr2 p'), p == p' := destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂)) protected definition is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) : inhabited (sigma B) := inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (dpair (default A) b))) theorem eq_rec_dpair_commute {C : Πa, B a → Type} {a a' : A} (H : a = a') (b : B a) (c : C a b) : eq.rec_on H (dpair b c) = dpair (eq.rec_on H b) (eq.rec_on (dcongr_arg2 C H rfl) c) := eq.drec_on H (dpair_eq rfl (!eq.rec_on_id⁻¹)) variables {C : Πa, B a → Type} {D : Πa b, C a b → Type} definition dtrip (a : A) (b : B a) (c : C a b) := (a; b; c) definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := (a; b; c; d) definition dpr1' (x : Σ a, B a) := x.1 definition dpr2' (x : Σ a b, C a b) := x.2.1 definition dpr3 (x : Σ a b, C a b) := x.2.2 definition dpr3' (x : Σ a b c, D a b c) := x.2.2.1 definition dpr4 (x : Σ a b c, D a b c) := x.2.2.2 theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) : (a₁; b₁; c₁) = (a₂; b₂; c₂) := dcongr_arg3 dtrip H₁ H₂ H₃ theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : (a₁; b₁; c₁) = (a₂; b₂; c₂) := hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃ theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} : ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : dpr2' p₁ = dpr2' p₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) (dpr3 p₁) = dpr3 p₂), p₁ = p₂ := destruct p₁ (take a₁ q₁, destruct q₁ (take b₁ c₁, destruct p₂ (take a₂ q₂, destruct q₂ (take b₂ c₂ H₁ H₂ H₃, ndtrip_eq H₁ H₂ H₃)))) end sigma