-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Floris van Doorn, Jakob von Raumer -- This file contains basic constructions on precategories, including common precategories import .natural_transformation hott.path import data.unit data.sigma data.prod data.empty data.bool hott.types.prod open path prod eq eq.ops namespace precategory namespace opposite section definition opposite {ob : Type} (C : precategory ob) : precategory ob := mk (λ a b, hom b a) (λ b a, !homH) (λ a b c f g, g ∘ f) (λ a, id) (λ a b c d f g h, !assoc⁻¹) (λ a b f, !id_right) (λ a b f, !id_left) definition Opposite (C : Precategory) : Precategory := Mk (opposite C) infixr `∘op`:60 := @compose _ (opposite _) _ _ _ variables {C : Precategory} {a b c : C} theorem compose_op {f : hom a b} {g : hom b c} : f ∘op g ≈ g ∘ f := idp -- TODO: Decide whether just to use funext for this theorem or -- take the trick they use in Coq-HoTT, and introduce a further -- axiom in the definition of precategories that provides thee -- symmetric associativity proof. theorem op_op' {ob : Type} (C : precategory ob) : opposite (opposite C) ≈ C := sorry theorem op_op : Opposite (Opposite C) ≈ C := (ap (Precategory.mk C) (op_op' C)) ⬝ !Precategory.equal end end opposite /-definition type_category : precategory Type := mk (λa b, a → b) (λ a b c, function.compose) (λ a, function.id) (λ a b c d h g f, symm (function.compose_assoc h g f)) (λ a b f, function.compose_id_left f) (λ a b f, function.compose_id_right f) definition Type_category : Category := Mk type_category-/ -- Note: Discrete precategory doesn't really make sense in HoTT, -- We'll define a discrete _category_ later. /-section open decidable unit empty variables {A : Type} [H : decidable_eq A] include H definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty) theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _ definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c := decidable.rec_on (H b c) (λ Hbc g, decidable.rec_on (H a b) (λ Hab f, rec_on_true (trans Hab Hbc) ⋆) (λh f, empty.rec _ f) f) (λh (g : empty), empty.rec _ g) g omit H definition discrete_precategory (A : Type) [H : decidable_eq A] : precategory A := mk (λa b, set_hom a b) (λ a b c g f, set_compose g f) (λ a, decidable.rec_on_true rfl ⋆) (λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _) (λ a b f, @subsingleton.elim (set_hom a b) _ _ _) (λ a b f, @subsingleton.elim (set_hom a b) _ _ _) definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A) end section open unit bool definition category_one := discrete_category unit definition Category_one := Mk category_one definition category_two := discrete_category bool definition Category_two := Mk category_two end-/ namespace product section open prod truncation definition prod_precategory {obC obD : Type} (C : precategory obC) (D : precategory obD) : precategory (obC × obD) := mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b)) (λ a b, trunc_prod nat.zero (!homH) (!homH)) (λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) ) (λ a, (id, id)) (λ a b c d h g f, pair_path !assoc !assoc ) (λ a b f, prod.path !id_left !id_left ) (λ a b f, prod.path !id_right !id_right) definition Prod_precategory (C D : Precategory) : Precategory := Mk (prod_precategory C D) end end product namespace ops --notation `type`:max := Type_category --notation 1 := Category_one --it was confusing for me (Floris) that no ``s are needed here --notation 2 := Category_two postfix `ᵒᵖ`:max := opposite.Opposite infixr `×c`:30 := product.Prod_precategory --instance [persistent] type_category category_one -- category_two product.prod_category instance [persistent] product.prod_precategory end ops open ops namespace opposite section open ops functor set_option pp.universes true definition opposite_functor {C D : Precategory} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ := /-begin apply (@functor.mk (Cᵒᵖ) (Dᵒᵖ)), intro a, apply (respect_id F), intros, apply (@respect_comp C D) end-/ sorry end end opposite namespace product section open ops functor definition prod_functor {C C' D D' : Precategory} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' := functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a))) (λ a b f, pair (F (pr1 f)) (G (pr2 f))) (λ a, pair_path !respect_id !respect_id) (λ a b c g f, pair_path !respect_comp !respect_comp) end end product namespace ops infixr `×f`:30 := product.prod_functor infixr `ᵒᵖᶠ`:max := opposite.opposite_functor end ops section functor_category variables (C D : Precategory) definition functor_category [fx : funext] : precategory (functor C D) := mk (λa b, natural_transformation a b) sorry --TODO: Prove that the nat trafos between two functors are an hset (λ a b c g f, natural_transformation.compose g f) (λ a, natural_transformation.id) (λ a b c d h g f, !natural_transformation.assoc) (λ a b f, !natural_transformation.id_left) (λ a b f, !natural_transformation.id_right) end functor_category namespace slice open sigma function variables {ob : Type} {C : precategory ob} {c : ob} protected definition slice_obs (C : precategory ob) (c : ob) := Σ(b : ob), hom b c variables {a b : slice_obs C c} protected definition to_ob (a : slice_obs C c) : ob := dpr1 a protected definition to_ob_def (a : slice_obs C c) : to_ob a = dpr1 a := rfl protected definition ob_hom (a : slice_obs C c) : hom (to_ob a) c := dpr2 a -- protected theorem slice_obs_equal (H₁ : to_ob a = to_ob b) -- (H₂ : eq.drec_on H₁ (ob_hom a) = ob_hom b) : a = b := -- sigma.equal H₁ H₂ protected definition slice_hom (a b : slice_obs C c) : Type := Σ(g : hom (to_ob a) (to_ob b)), ob_hom b ∘ g = ob_hom a protected definition hom_hom (f : slice_hom a b) : hom (to_ob a) (to_ob b) := dpr1 f protected definition commute (f : slice_hom a b) : ob_hom b ∘ (hom_hom f) = ob_hom a := dpr2 f -- protected theorem slice_hom_equal (f g : slice_hom a b) (H : hom_hom f = hom_hom g) : f = g := -- sigma.equal H !proof_irrel /- TODO wait for some helping lemmas definition slice_category (C : precategory ob) (c : ob) : precategory (slice_obs C c) := mk (λa b, slice_hom a b) sorry (λ a b c g f, dpair (hom_hom g ∘ hom_hom f) (show ob_hom c ∘ (hom_hom g ∘ hom_hom f) ≈ ob_hom a, proof calc ob_hom c ∘ (hom_hom g ∘ hom_hom f) ≈ (ob_hom c ∘ hom_hom g) ∘ hom_hom f : !assoc ... ≈ ob_hom b ∘ hom_hom f : {commute g} ... ≈ ob_hom a : {commute f} qed)) (λ a, dpair id !id_right) (λ a b c d h g f, dpair_path !assoc sorry) (λ a b f, sigma.path !id_left sorry) (λ a b f, sigma.path !id_right sorry) -/ -- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c) -- := -- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a) -- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) -- (show dpr2 c ∘ (dpr1 g ∘ dpr1 f) = dpr2 a, -- proof -- calc -- dpr2 c ∘ (dpr1 g ∘ dpr1 f) = (dpr2 c ∘ dpr1 g) ∘ dpr1 f : !assoc -- ... = dpr2 b ∘ dpr1 f : {dpr2 g} -- ... = dpr2 a : {dpr2 f} -- qed)) -- (λ a, dpair id !id_right) -- (λ a b c d h g f, dpair_eq !assoc !proof_irrel) -- (λ a b f, sigma.equal !id_left !proof_irrel) -- (λ a b f, sigma.equal !id_right !proof_irrel) -- We use !proof_irrel instead of rfl, to give the unifier an easier time exit definition Slice_category [reducible] (C : Category) (c : C) := Mk (slice_category C c) open category.ops instance [persistent] slice_category variables {D : Category} definition forgetful (x : D) : (Slice_category D x) ⇒ D := functor.mk (λ a, to_ob a) (λ a b f, hom_hom f) (λ a, rfl) (λ a b c g f, rfl) definition postcomposition_functor {x y : D} (h : x ⟶ y) : Slice_category D x ⇒ Slice_category D y := functor.mk (λ a, dpair (to_ob a) (h ∘ ob_hom a)) (λ a b f, dpair (hom_hom f) (calc (h ∘ ob_hom b) ∘ hom_hom f = h ∘ (ob_hom b ∘ hom_hom f) : assoc h (ob_hom b) (hom_hom f)⁻¹ ... = h ∘ ob_hom a : congr_arg (λx, h ∘ x) (commute f))) (λ a, rfl) (λ a b c g f, dpair_eq rfl !proof_irrel) -- -- in the following comment I tried to have (A = B) in the type of a == b, but that doesn't solve the problems -- definition heq2 {A B : Type} (H : A = B) (a : A) (b : B) := a == b -- definition heq2.intro {A B : Type} {a : A} {b : B} (H : a == b) : heq2 (heq.type_eq H) a b := H -- definition heq2.elim {A B : Type} {a : A} {b : B} (H : A = B) (H2 : heq2 H a b) : a == b := H2 -- definition heq2.proof_irrel {A B : Prop} (a : A) (b : B) (H : A = B) : heq2 H a b := -- hproof_irrel H a b -- theorem functor.mk_eq2 {C D : Category} {obF obG : C → D} {homF homG idF idG compF compG} -- (Hob : ∀x, obF x = obG x) -- (Hmor : ∀(a b : C) (f : a ⟶ b), heq2 (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) (homG a b f)) -- : functor.mk obF homF idF compF = functor.mk obG homG idG compG := -- hddcongr_arg4 functor.mk -- (funext Hob) -- (hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor)))) -- !proof_irrel -- !proof_irrel -- set_option pp.implicit true -- set_option pp.coercions true -- definition slice_functor : D ⇒ Category_of_categories := -- functor.mk (λ a, Category.mk (slice_obs D a) (slice_category D a)) -- (λ a b f, postcomposition_functor f) -- (λ a, functor.mk_heq -- (λx, sigma.equal rfl !id_left) -- (λb c f, sigma.hequal sorry !heq.refl (hproof_irrel sorry _ _))) -- (λ a b c g f, functor.mk_heq -- (λx, sigma.equal (sorry ⬝ refl (dpr1 x)) sorry) -- (λb c f, sorry)) --the error message generated here is really confusing: the type of the above refl should be -- "@dpr1 D (λ (a_1 : D), a_1 ⟶ a) x = @dpr1 D (λ (a_1 : D), a_1 ⟶ c) x", but the second dpr1 is not even well-typed end slice -- section coslice -- open sigma -- definition coslice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom c b) := -- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), g ∘ dpr2 a = dpr2 b) -- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) -- (show (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr2 c, -- proof -- calc -- (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr1 g ∘ (dpr1 f ∘ dpr2 a): symm !assoc -- ... = dpr1 g ∘ dpr2 b : {dpr2 f} -- ... = dpr2 c : {dpr2 g} -- qed)) -- (λ a, dpair id !id_left) -- (λ a b c d h g f, dpair_eq !assoc !proof_irrel) -- (λ a b f, sigma.equal !id_left !proof_irrel) -- (λ a b f, sigma.equal !id_right !proof_irrel) -- -- theorem slice_coslice_opp {ob : Type} (C : category ob) (c : ob) : -- -- coslice C c = opposite (slice (opposite C) c) := -- -- sorry -- end coslice section arrow open sigma eq.ops -- theorem concat_commutative_squares {ob : Type} {C : category ob} {a1 a2 a3 b1 b2 b3 : ob} -- {f1 : a1 => b1} {f2 : a2 => b2} {f3 : a3 => b3} {g2 : a2 => a3} {g1 : a1 => a2} -- {h2 : b2 => b3} {h1 : b1 => b2} (H1 : f2 ∘ g1 = h1 ∘ f1) (H2 : f3 ∘ g2 = h2 ∘ f2) -- : f3 ∘ (g2 ∘ g1) = (h2 ∘ h1) ∘ f1 := -- calc -- f3 ∘ (g2 ∘ g1) = (f3 ∘ g2) ∘ g1 : assoc -- ... = (h2 ∘ f2) ∘ g1 : {H2} -- ... = h2 ∘ (f2 ∘ g1) : symm assoc -- ... = h2 ∘ (h1 ∘ f1) : {H1} -- ... = (h2 ∘ h1) ∘ f1 : assoc -- definition arrow {ob : Type} (C : category ob) : category (Σ(a b : ob), hom a b) := -- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)) (h : hom (dpr2' a) (dpr2' b)), -- dpr3 b ∘ g = h ∘ dpr3 a) -- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (dpair (dpr2' g ∘ dpr2' f) (concat_commutative_squares (dpr3 f) (dpr3 g)))) -- (λ a, dpair id (dpair id (id_right ⬝ (symm id_left)))) -- (λ a b c d h g f, dtrip_eq2 assoc assoc !proof_irrel) -- (λ a b f, trip.equal2 id_left id_left !proof_irrel) -- (λ a b f, trip.equal2 id_right id_right !proof_irrel) -- make these definitions private? variables {ob : Type} {C : category ob} protected definition arrow_obs (ob : Type) (C : category ob) := Σ(a b : ob), hom a b variables {a b : arrow_obs ob C} protected definition src (a : arrow_obs ob C) : ob := dpr1 a protected definition dst (a : arrow_obs ob C) : ob := dpr2' a protected definition to_hom (a : arrow_obs ob C) : hom (src a) (dst a) := dpr3 a protected definition arrow_hom (a b : arrow_obs ob C) : Type := Σ (g : hom (src a) (src b)) (h : hom (dst a) (dst b)), to_hom b ∘ g = h ∘ to_hom a protected definition hom_src (m : arrow_hom a b) : hom (src a) (src b) := dpr1 m protected definition hom_dst (m : arrow_hom a b) : hom (dst a) (dst b) := dpr2' m protected definition commute (m : arrow_hom a b) : to_hom b ∘ (hom_src m) = (hom_dst m) ∘ to_hom a := dpr3 m definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) := mk (λa b, arrow_hom a b) (λ a b c g f, dpair (hom_src g ∘ hom_src f) (dpair (hom_dst g ∘ hom_dst f) (show to_hom c ∘ (hom_src g ∘ hom_src f) = (hom_dst g ∘ hom_dst f) ∘ to_hom a, proof calc to_hom c ∘ (hom_src g ∘ hom_src f) = (to_hom c ∘ hom_src g) ∘ hom_src f : !assoc ... = (hom_dst g ∘ to_hom b) ∘ hom_src f : {commute g} ... = hom_dst g ∘ (to_hom b ∘ hom_src f) : symm !assoc ... = hom_dst g ∘ (hom_dst f ∘ to_hom a) : {commute f} ... = (hom_dst g ∘ hom_dst f) ∘ to_hom a : !assoc qed) )) (λ a, dpair id (dpair id (!id_right ⬝ (symm !id_left)))) (λ a b c d h g f, ndtrip_eq !assoc !assoc !proof_irrel) (λ a b f, ndtrip_equal !id_left !id_left !proof_irrel) (λ a b f, ndtrip_equal !id_right !id_right !proof_irrel) end arrow end category -- definition foo -- : category (sorry) := -- mk (λa b, sorry) -- (λ a b c g f, sorry) -- (λ a, sorry) -- (λ a b c d h g f, sorry) -- (λ a b f, sorry) -- (λ a b f, sorry)