import data.nat data.prod logic.wf_k open nat well_founded decidable prod eq.ops -- I use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A := decidable.rec_on H (assume Hc, t Hc) (assume Hnc, e Hnc) notation `dif` c `then` t:45 `else` e:45 := dite c t e -- Auxiliary lemma used to justify recursive call private lemma lt_aux {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := have y0 : 0 < y, from and.elim_left H, have x0 : 0 < x, from lt_le_trans y0 (and.elim_right H), sub_lt x0 y0 definition wdiv.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y) (lt_aux Hp) y + 1) else (λ Hn, zero) definition wdiv (x y : nat) := fix wdiv.F x y theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 := congr_fun (well_founded.fix_eq wdiv.F x) y -- There is a little bit of cheating in the definition above. -- I avoid the packing/unpacking into tuples. -- The actual definitional package would not do that. -- It will always pack things. definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel) definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := intro_k (prod.lex.wf lt.wf lt.wf) 20 -- allow 20 recursive calls without computing with proofs infixl `≺`:50 := pair_nat.lt -- Recursive lemma used to justify recursive call private lemma plt_aux (p : nat × nat) (H : 0 < pr₂ p ∧ pr₂ p ≤ pr₁ p) : (pr₁ p - pr₂ p, pr₂ p) ≺ p := have aux₁ : pr₁ p - pr₂ p < pr₁ p, from lt_aux H, have aux₂ : (pr₁ p - pr₂ p, pr₂ p) ≺ (pr₁ p, pr₂ p), from !lex.left aux₁, prod.eta p ▸ aux₂ definition pdiv.F (p₁ : nat × nat) (f : Π p₂ : nat × nat, p₂ ≺ p₁ → nat) : nat := let x := pr₁ p₁ in let y := pr₂ p₁ in dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y, y) (plt_aux p₁ Hp) + 1) else (λ Hnp, zero) definition pdiv (x y : nat) := fix pdiv.F (x, y) theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero := well_founded.fix_eq pdiv.F (x, y) -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. -- I used that, when I wrote div_def and pdiv_def. theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λ Hc, t) (λ Hnc, e) = ite c t e := rfl example : pdiv 398 23 = 17 := rfl