import data.unit data.prod inductive ftree (A : Type) (B : Type) : Type := leafa : ftree A B, node : (A → B → ftree A B) → (B → ftree A B) → ftree A B set_option pp.universes true check @ftree namespace ftree namespace manual definition below.{l l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} (C : ftree A B → Type.{l+1}) (t : ftree A B) : Type.{max l₁ l₂ (l+1)} := @rec.{(max l₁ l₂ (l+1))+1 l₁ l₂} A B (λ t : ftree A B, Type.{max l₁ l₂ (l+1)}) unit.{max l₁ l₂ (l+1)} (λ (f₁ : A → B → ftree A B) (f₂ : B → ftree A B) (r₁ : Π (a : A) (b : B), Type.{max l₁ l₂ (l+1)}) (r₂ : Π (b : B), Type.{max l₁ l₂ (l+1)}), let fc₁ : Type.{max l₁ l₂ (l+1)} := Π (a : A) (b : B), C (f₁ a b) in let fc₂ : Type.{max l₂ l+1} := Π (b : B), C (f₂ b) in let fr₁ : Type.{max l₁ l₂ (l+1)} := Π (a : A) (b : B), r₁ a b in let fr₂ : Type.{max l₁ l₂ (l+1)} := Π (b : B), r₂ b in let p₁ : Type.{max l₁ l₂ (l+1)} := prod.{(max l₁ l₂ (l+1)) (max l₁ l₂ (l+1))} fc₁ fr₁ in let p₂ : Type.{max l₁ l₂ (l+1)} := prod.{(max l₂ (l+1)) (max l₁ l₂ (l+1))} fc₂ fr₂ in prod.{(max l₁ l₂ (l+1)) (max l₁ l₂ (l+1))} p₁ p₂) t definition pbelow.{l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} (C : ftree A B → Prop) (t : ftree A B) : Prop := @rec.{1 l₁ l₂} A B (λ t : ftree A B, Prop) true (λ (f₁ : A → B → ftree A B) (f₂ : B → ftree A B) (r₁ : Π (a : A) (b : B), Prop) (r₂ : Π (b : B), Prop), let fc₁ : Prop := ∀ (a : A) (b : B), C (f₁ a b) in let fc₂ : Prop := ∀ (b : B), C (f₂ b) in let fr₁ : Prop := ∀ (a : A) (b : B), r₁ a b in let fr₂ : Prop := ∀ (b : B), r₂ b in let p₁ : Prop := fc₁ ∧ fr₁ in let p₂ : Prop := fc₂ ∧ fr₂ in p₁ ∧ p₂) t end manual definition brec_on.{l l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} {C : ftree A B → Type.{l+1}} (t : ftree A B) (F : Π (t : ftree A B), @below A B C t → C t) : C t := have gen : prod.{(l+1) (max l₁ l₂ (l+1))} (C t) (@below A B C t), from @rec.{(max l₁ l₂ (l+1)) l₁ l₂} A B (λ t : ftree A B, prod.{(l+1) (max l₁ l₂ (l+1))} (C t) (@below A B C t)) (have b : @below A B C (leafa A B), from unit.star.{max l₁ l₂ (l+1)}, have c : C (leafa A B), from F (leafa A B) b, prod.mk.{(l+1) (max l₁ l₂ (l+1))} c b) (λ (f₁ : A → B → ftree A B) (f₂ : B → ftree A B) (r₁ : Π (a : A) (b : B), prod.{(l+1) (max l₁ l₂ (l+1))} (C (f₁ a b)) (@below A B C (f₁ a b))) (r₂ : Π (b : B), prod.{(l+1) (max l₁ l₂ (l+1))} (C (f₂ b)) (@below A B C (f₂ b))), let fc₁ : Π (a : A) (b : B), C (f₁ a b) := λ (a : A) (b : B), prod.pr1 (r₁ a b) in let fr₁ : Π (a : A) (b : B), @below A B C (f₁ a b) := λ (a : A) (b : B), prod.pr2 (r₁ a b) in let fc₂ : Π (b : B), C (f₂ b) := λ (b : B), prod.pr1 (r₂ b) in let fr₂ : Π (b : B), @below A B C (f₂ b) := λ (b : B), prod.pr2 (r₂ b) in have b : @below A B C (node f₁ f₂), from prod.mk (prod.mk fc₁ fr₁) (prod.mk fc₂ fr₂), have c : C (node f₁ f₂), from F (node f₁ f₂) b, prod.mk c b) t, prod.pr1 gen definition binduction_on.{l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} {C : ftree A B → Prop} (t : ftree A B) (F : Π (t : ftree A B), @ibelow A B C t → C t) : C t := have gen : C t ∧ @ibelow A B C t, from @rec.{0 l₁ l₂} A B (λ t : ftree A B, C t ∧ @ibelow A B C t) (have b : @ibelow A B C (leafa A B), from true.intro, have c : C (leafa A B), from F (leafa A B) b, and.intro c b) (λ (f₁ : A → B → ftree A B) (f₂ : B → ftree A B) (r₁ : ∀ (a : A) (b : B), C (f₁ a b) ∧ @ibelow A B C (f₁ a b)) (r₂ : ∀ (b : B), C (f₂ b) ∧ @ibelow A B C (f₂ b)), let fc₁ : ∀ (a : A) (b : B), C (f₁ a b) := λ (a : A) (b : B), and.elim_left (r₁ a b) in let fr₁ : ∀ (a : A) (b : B), @ibelow A B C (f₁ a b) := λ (a : A) (b : B), and.elim_right (r₁ a b) in let fc₂ : ∀ (b : B), C (f₂ b) := λ (b : B), and.elim_left (r₂ b) in let fr₂ : ∀ (b : B), @ibelow A B C (f₂ b) := λ (b : B), and.elim_right (r₂ b) in have b : @ibelow A B C (node f₁ f₂), from and.intro (and.intro fc₁ fr₁) (and.intro fc₂ fr₂), have c : C (node f₁ f₂), from F (node f₁ f₂) b, and.intro c b) t, and.elim_left gen end ftree