import hott.path tools.tactic open path tactic open path (induction_on) definition concat_whisker2 {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') : (whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') := begin apply induction_on b, apply induction_on a, apply (concat_1p _)⁻¹, end