/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn The pushout of categories The morphisms in the pushout of two categories is defined as a quotient on lists of composable morphisms. For this we use the notion of paths in a graph. -/ import ..category ..nat_trans hit.set_quotient algebra.relation ..groupoid algebra.graph .functor open eq is_trunc functor trunc sum set_quotient relation iso category sigma nat nat_trans /- we first define the categorical structure on paths in a graph -/ namespace paths section parameters {A : Type} {R : A → A → Type} (Q : Π⦃a a' : A⦄, paths R a a' → paths R a a' → Type) variables ⦃a a' a₁ a₂ a₃ a₄ : A⦄ definition paths_trel [constructor] (l l' : paths R a a') : Prop := ∥paths_rel Q l l'∥ local notation `S` := @paths_trel definition paths_quotient (a a' : A) : Type := set_quotient (@S a a') local notation `mor` := paths_quotient local attribute paths_quotient [reducible] definition is_reflexive_R : is_reflexive (@S a a') := begin constructor, intro s, apply tr, constructor end local attribute is_reflexive_R [instance] definition paths_compose [unfold 7 8] (g : mor a₂ a₃) (f : mor a₁ a₂) : mor a₁ a₃ := begin refine quotient_binary_map _ _ g f, exact append, intros, refine trunc_functor2 _ r s, exact rel_respect_append end definition paths_id [constructor] (a : A) : mor a a := class_of nil local infix ` ∘∘ `:60 := paths_compose local notation `p1` := paths_id _ theorem paths_assoc (h : mor a₃ a₄) (g : mor a₂ a₃) (f : mor a₁ a₂) : h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f := begin induction h using set_quotient.rec_prop with h, induction g using set_quotient.rec_prop with g, induction f using set_quotient.rec_prop with f, rewrite [▸*, append_assoc] end theorem paths_id_left (f : mor a a') : p1 ∘∘ f = f := begin induction f using set_quotient.rec_prop with f, reflexivity end theorem paths_id_right (f : mor a a') : f ∘∘ p1 = f := begin induction f using set_quotient.rec_prop with f, rewrite [▸*, append_nil] end definition Precategory_paths [constructor] : Precategory := precategory.MK A mor _ paths_compose paths_id paths_assoc paths_id_left paths_id_right /- given a way to reverse edges and some additional properties we can extend this to a groupoid structure -/ parameters (inv : Π⦃a a' : A⦄, R a a' → R a' a) (rel_inv : Π⦃a a' : A⦄ {l l' : paths R a a'}, Q l l' → paths_rel Q (reverse inv l) (reverse inv l')) (li : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [inv r, r] nil) (ri : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [r, inv r] nil) include rel_inv li ri definition paths_inv [unfold 8] (f : mor a a') : mor a' a := begin refine quotient_unary_map (reverse inv) _ f, intros, refine trunc_functor _ _ r, esimp, intro s, apply rel_respect_reverse inv s rel_inv end local postfix `^`:max := paths_inv theorem paths_left_inv (f : mor a₁ a₂) : f^ ∘∘ f = p1 := begin induction f using set_quotient.rec_prop with f, esimp, apply eq_of_rel, apply tr, apply rel_left_inv, apply li end theorem paths_right_inv (f : mor a₁ a₂) : f ∘∘ f^ = p1 := begin induction f using set_quotient.rec_prop with f, esimp, apply eq_of_rel, apply tr, apply rel_right_inv, apply ri end definition Groupoid_paths [constructor] : Groupoid := groupoid.MK Precategory_paths (λa b f, is_iso.mk (paths_inv f) (paths_left_inv f) (paths_right_inv f)) end end paths open paths namespace category /- We also define the pushout of two groupoids with a type of basepoints, which are surjectively mapped into C (although we don't need to assume that this mapping is surjective for the definition) -/ section inductive bpushout_prehom_index {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D) (G : C ⇒ E) : D + E → D + E → Type := | iD : Π{d d' : D} (f : d ⟶ d'), bpushout_prehom_index k F G (inl d) (inl d') | iE : Π{e e' : E} (g : e ⟶ e'), bpushout_prehom_index k F G (inr e) (inr e') | DE : Π(s : S), bpushout_prehom_index k F G (inl (F (k s))) (inr (G (k s))) | ED : Π(s : S), bpushout_prehom_index k F G (inr (G (k s))) (inl (F (k s))) open bpushout_prehom_index definition bpushout_prehom {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D) (G : C ⇒ E) : D + E → D + E → Type := paths (bpushout_prehom_index k F G) inductive bpushout_hom_rel_index {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D) (G : C ⇒ E) : Π⦃x x' : D + E⦄, bpushout_prehom k F G x x' → bpushout_prehom k F G x x' → Type := | DD : Π{d₁ d₂ d₃ : D} (g : d₂ ⟶ d₃) (f : d₁ ⟶ d₂), bpushout_hom_rel_index k F G [iD k F G g, iD k F G f] [iD k F G (g ∘ f)] | EE : Π{e₁ e₂ e₃ : E} (g : e₂ ⟶ e₃) (f : e₁ ⟶ e₂), bpushout_hom_rel_index k F G [iE k F G g, iE k F G f] [iE k F G (g ∘ f)] | DED : Π(s : S), bpushout_hom_rel_index k F G [ED k F G s, DE k F G s] nil | EDE : Π(s : S), bpushout_hom_rel_index k F G [DE k F G s, ED k F G s] nil | idD : Π(d : D), bpushout_hom_rel_index k F G [iD k F G (ID d)] nil | idE : Π(e : E), bpushout_hom_rel_index k F G [iE k F G (ID e)] nil | cohDE : Π{s₁ s₂ : S} (h : k s₁ ⟶ k s₂), bpushout_hom_rel_index k F G [iE k F G (G h), DE k F G s₁] [DE k F G s₂, iD k F G (F h)] | cohED : Π{s₁ s₂ : S} (h : k s₁ ⟶ k s₂), bpushout_hom_rel_index k F G [ED k F G s₂, iE k F G (G h)] [iD k F G (F h), ED k F G s₁] open bpushout_hom_rel_index paths.paths_rel definition Precategory_bpushout [constructor] {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D) (G : C ⇒ E) : Precategory := Precategory_paths (bpushout_hom_rel_index k F G) parameters {C D E X : Precategory} (F : C ⇒ D) (G : C ⇒ E) (H : D ⇒ X) (K : E ⇒ X) (η : H ∘f F ≅ K ∘f G) definition Cpushout [constructor] : Precategory := Precategory_bpushout (λc, c) F G definition Cpushout_inl [constructor] : D ⇒ Cpushout := begin fapply functor.mk, { exact inl}, { intro d d' f, exact class_of [iD (λc, c) F G f]}, { intro d, refine eq_of_rel (tr (paths_rel_of_Q _)), apply idD}, { intro d₁ d₂ d₃ g f, refine (eq_of_rel (tr (paths_rel_of_Q _)))⁻¹, apply DD} end definition Cpushout_inr [constructor] : E ⇒ Cpushout := begin fapply functor.mk, { exact inr}, { intro e e' f, exact class_of [iE (λc, c) F G f]}, { intro e, refine eq_of_rel (tr (paths_rel_of_Q _)), apply idE}, { intro e₁ e₂ e₃ g f, refine (eq_of_rel (tr (paths_rel_of_Q _)))⁻¹, apply EE} end definition Cpushout_coh [constructor] : Cpushout_inl ∘f F ≅ Cpushout_inr ∘f G := begin fapply natural_iso.MK, { intro c, exact class_of [DE (λ c, c) F G c]}, { intro c c' f, refine eq_of_rel (tr (paths_rel_of_Q !cohDE))}, { intro c, exact class_of [ED (λ c, c) F G c]}, { intro c, refine eq_of_rel (tr (paths_rel_of_Q !DED))}, { intro c, refine eq_of_rel (tr (paths_rel_of_Q !EDE))}, end --(class_of [DE (λ c, c) F G s]) variables ⦃x x' x₁ x₂ x₃ : Cpushout⦄ include H K local notation `R` := bpushout_prehom_index (λ c, c) F G local notation `Q` := bpushout_hom_rel_index (λ c, c) F G definition Cpushout_functor_ob [unfold 9] (x : Cpushout) : X := begin induction x with d e, { exact H d}, { exact K e} end include η parameters {F G H K} definition Cpushout_functor_reduction_rule [unfold 12] (i : R x x') : Cpushout_functor_ob x ⟶ Cpushout_functor_ob x' := begin induction i, { exact H f}, { exact K g}, { exact natural_map (to_hom η) s}, { exact natural_map (to_inv η) s} end definition Cpushout_functor_list (l : paths R x x') : Cpushout_functor_ob x ⟶ Cpushout_functor_ob x' := realize _ Cpushout_functor_reduction_rule (λa, id) (λa b c g f, f ∘ g) l definition Cpushout_functor_list_nil (x : Cpushout) : Cpushout_functor_list (@nil _ _ x) = id := idp definition Cpushout_functor_list_cons (r : R x₂ x₃) (l : paths R x₁ x₂) : Cpushout_functor_list (r :: l) = Cpushout_functor_reduction_rule r ∘ Cpushout_functor_list l := idp definition Cpushout_functor_list_singleton (r : R x₁ x₂) : Cpushout_functor_list [r] = Cpushout_functor_reduction_rule r := realize_singleton (λa b f, id_right f) r definition Cpushout_functor_list_pair (r₂ : R x₂ x₃) (r₁ : R x₁ x₂) : Cpushout_functor_list [r₂, r₁] = Cpushout_functor_reduction_rule r₂ ∘ Cpushout_functor_reduction_rule r₁ := realize_pair (λa b f, id_right f) r₂ r₁ definition Cpushout_functor_list_append (l₂ : paths R x₂ x₃) (l₁ : paths R x₁ x₂) : Cpushout_functor_list (l₂ ++ l₁) = Cpushout_functor_list l₂ ∘ Cpushout_functor_list l₁ := realize_append (λa b c d h g f, assoc f g h) (λa b f, id_left f) l₂ l₁ theorem Cpushout_functor_list_rel {l l' : paths R x x'} (q : Q l l') : Cpushout_functor_list l = Cpushout_functor_list l' := begin induction q, { rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_singleton], exact (respect_comp H g f)⁻¹}, { rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_singleton], exact (respect_comp K g f)⁻¹}, { rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_nil], exact ap010 natural_map (to_left_inverse η) s}, { rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_nil], exact ap010 natural_map (to_right_inverse η) s}, { rewrite [Cpushout_functor_list_singleton, Cpushout_functor_list_nil], exact respect_id H d}, { rewrite [Cpushout_functor_list_singleton, Cpushout_functor_list_nil], exact respect_id K e}, { rewrite [+Cpushout_functor_list_pair], exact naturality (to_hom η) h}, { rewrite [+Cpushout_functor_list_pair], exact (naturality (to_inv η) h)⁻¹} end definition Cpushout_functor_hom [unfold 12] (f : x ⟶ x') : Cpushout_functor_ob x ⟶ Cpushout_functor_ob x' := begin induction f with l l l' q, { exact Cpushout_functor_list l}, { esimp at *, induction q with q, refine realize_eq _ _ _ q, { intros, apply assoc}, { intros, apply id_left}, intro a₁ a₂ l₁ l₁ q, exact Cpushout_functor_list_rel q} end definition Cpushout_functor [constructor] : Cpushout ⇒ X := begin fapply functor.mk, { exact Cpushout_functor_ob}, { exact Cpushout_functor_hom}, { intro x, reflexivity}, { intro x₁ x₂ x₃ g f, induction g using set_quotient.rec_prop with l₂, induction f using set_quotient.rec_prop with l₁, exact Cpushout_functor_list_append l₂ l₁} end definition Cpushout_functor_inl [constructor] : Cpushout_functor ∘f Cpushout_inl ≅ H := begin fapply natural_iso.mk, { fapply nat_trans.mk, { intro d, exact id}, { intro d d' f, rewrite [▸*, Cpushout_functor_list_singleton], apply comp_id_eq_id_comp}}, esimp, exact _ end definition Cpushout_functor_inr [constructor] : Cpushout_functor ∘f Cpushout_inr ≅ K := begin fapply natural_iso.mk, { fapply nat_trans.mk, { intro d, exact id}, { intro d d' f, rewrite [▸*, Cpushout_functor_list_singleton], apply comp_id_eq_id_comp}}, esimp, exact _ end definition Cpushout_functor_coh (c : C) : natural_map (to_hom Cpushout_functor_inr) (G c) ∘ Cpushout_functor (natural_map (to_hom Cpushout_coh) c) ∘ natural_map (to_inv Cpushout_functor_inl) (F c) = natural_map (to_hom η) c := !id_leftright ⬝ !Cpushout_functor_list_singleton definition Cpushout_functor_unique_ob [unfold 13] (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H) (η₂ : L ∘f Cpushout_inr ≅ K) (x : Cpushout) : L x ⟶ Cpushout_functor x := begin induction x with d e, { exact natural_map (to_hom η₁) d}, { exact natural_map (to_hom η₂) e} end definition Cpushout_functor_unique_inv_ob [unfold 13] (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H) (η₂ : L ∘f Cpushout_inr ≅ K) (x : Cpushout) : Cpushout_functor x ⟶ L x := begin induction x with d e, { exact natural_map (to_inv η₁) d}, { exact natural_map (to_inv η₂) e} end definition Cpushout_functor_unique_nat_singleton (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H) (η₂ : L ∘f Cpushout_inr ≅ K) (p : Πs, natural_map (to_hom η₂) (to_fun_ob G s) ∘ to_fun_hom L (natural_map (to_hom Cpushout_coh) s) ∘ natural_map (to_inv η₁) (to_fun_ob F s) = natural_map (to_hom η) s) (r : R x x') : Cpushout_functor_reduction_rule r ∘ Cpushout_functor_unique_ob L η₁ η₂ x = Cpushout_functor_unique_ob L η₁ η₂ x' ∘ L (class_of [r]) := begin induction r, { exact naturality (to_hom η₁) f}, { exact naturality (to_hom η₂) g}, { refine ap (λx, x ∘ _) (p s)⁻¹ ⬝ _, refine !assoc' ⬝ _, apply ap (λx, _ ∘ x), refine !assoc' ⬝ _ ⬝ !id_right, apply ap (λx, _ ∘ x), exact ap010 natural_map (to_left_inverse η₁) (F s)}, { apply comp.cancel_left (to_hom (componentwise_iso η s)), refine !assoc ⬝ _ ⬝ ap (λx, x ∘ _) (p s), refine ap (λx, x ∘ _) (ap010 natural_map (to_right_inverse η) s) ⬝ _ ⬝ !assoc, refine !id_left ⬝ !id_right⁻¹ ⬝ _, apply ap (λx, _ ∘ x), refine _ ⬝ ap (λx, _ ∘ x) (ap (λx, x ∘ _) _⁻¹ ⬝ !assoc') ⬝ !assoc, rotate 2, exact ap010 natural_map (to_left_inverse η₁) (F s), refine _⁻¹ ⬝ ap (λx, _ ∘ x) !id_left⁻¹, refine (respect_comp L _ _)⁻¹ ⬝ _ ⬝ respect_id L _, apply ap (to_fun_hom L), refine eq_of_rel (tr (paths_rel_of_Q _)), apply EDE}, end definition Cpushout_functor_unique [constructor] (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H) (η₂ : L ∘f Cpushout_inr ≅ K) (p : Πs, natural_map (to_hom η₂) (to_fun_ob G s) ∘ to_fun_hom L (natural_map (to_hom Cpushout_coh) s) ∘ natural_map (to_inv η₁) (to_fun_ob F s) = natural_map (to_hom η) s) : L ≅ Cpushout_functor := begin fapply natural_iso.MK, { exact Cpushout_functor_unique_ob L η₁ η₂}, { intro x x' f, induction f using set_quotient.rec_prop with l, esimp, induction l with x x₁ x₂ x₃ r l IH, { refine !id_left ⬝ !id_right⁻¹ ⬝ _⁻¹, apply ap (λx, _ ∘ x), apply respect_id}, { rewrite [Cpushout_functor_list_cons, assoc', ▸*, IH, assoc, ▸*, Cpushout_functor_unique_nat_singleton L η₁ η₂ p r, ▸*, assoc', -respect_comp L]}}, { exact Cpushout_functor_unique_inv_ob L η₁ η₂}, { intro x, induction x with d e, { exact ap010 natural_map (to_left_inverse η₁) d}, { exact ap010 natural_map (to_left_inverse η₂) e}}, { intro x, induction x with d e, { exact ap010 natural_map (to_right_inverse η₁) d}, { exact ap010 natural_map (to_right_inverse η₂) e}}, end end open bpushout_prehom_index prod prod.ops is_equiv equiv definition Cpushout_universal {C D E : Precategory} {X : Category} (F : C ⇒ D) (G : C ⇒ E) (H : D ⇒ X) (K : E ⇒ X) (η : H ∘f F ≅ K ∘f G) : is_contr (Σ(L : Cpushout F G ⇒ X) (θ : L ∘f Cpushout_inl F G ≅ H × L ∘f Cpushout_inr F G ≅ K), Πs, natural_map (to_hom θ.2) (to_fun_ob G s) ∘ to_fun_hom L (class_of [DE (λ c, c) F G s]) ∘ natural_map (to_inv θ.1) (to_fun_ob F s) = natural_map (to_hom η) s) := begin fapply is_contr.mk, { exact ⟨Cpushout_functor η, (Cpushout_functor_inl η, Cpushout_functor_inr η), Cpushout_functor_coh η⟩}, intro v₁, induction v₁ with L v₂, induction v₂ with θ p, induction θ with θ₁ θ₂, fapply sigma_eq, { esimp, apply eq_of_iso, symmetry, exact Cpushout_functor_unique η L θ₁ θ₂ p}, fapply sigma_pathover, { apply prod_pathover: esimp, { apply iso_pathover, apply hom_pathover_functor_left_constant_right (precomposition_functor _ _), apply nat_trans_eq, intro d, xrewrite [↑[hom_of_eq], to_right_inv !eq_equiv_iso, ▸*], exact (ap010 natural_map (to_right_inverse θ₁) d)⁻¹}, { apply iso_pathover, apply hom_pathover_functor_left_constant_right (precomposition_functor _ _), apply nat_trans_eq, intro e, xrewrite [↑[hom_of_eq], to_right_inv !eq_equiv_iso, ▸*], exact (ap010 natural_map (to_right_inverse θ₂) e)⁻¹}}, apply is_prop.elimo end local attribute prod.eq_pr1 prod.eq_pr2 [reducible] definition Cpushout_equiv {C D E : Precategory} {X : Category} (F : C ⇒ D) (G : C ⇒ E) : (Cpushout F G ⇒ X) ≃ Σ(H : (D ⇒ X) × (E ⇒ X)), H.1 ∘f F ≅ H.2 ∘f G := begin fapply equiv.MK, { intro K, refine ⟨(K ∘f Cpushout_inl F G, K ∘f Cpushout_inr F G), _⟩, exact !assoc_iso⁻¹ⁱ ⬝i (K ∘fi Cpushout_coh F G) ⬝i !assoc_iso}, { intro v, cases v with w η, cases w with K L, exact Cpushout_functor η}, { exact abstract begin intro v, cases v with w η, cases w with K L, esimp at *, fapply sigma_eq, { fapply prod_eq: esimp; apply eq_of_iso, { exact Cpushout_functor_inl η}, { exact Cpushout_functor_inr η}}, esimp, apply iso_pathover, apply hom_pathover, rewrite [ap_compose' _ pr₁, ap_compose' _ pr₂, prod_eq_pr1, prod_eq_pr2], rewrite [-+respect_hom_of_eq (precomposition_functor _ _), +hom_of_eq_eq_of_iso], apply nat_trans_eq, intro c, esimp [category.to_precategory], rewrite [+id_left, +id_right, Cpushout_functor_list_singleton] end end}, { exact abstract begin intro K, esimp, refine eq_base_of_is_prop_sigma _ !is_trunc_succ _ _, rotate 1, { refine Cpushout_universal F G (K ∘f Cpushout_inl F G) (K ∘f Cpushout_inr F G) _, exact !assoc_iso⁻¹ⁱ ⬝i (K ∘fi Cpushout_coh F G) ⬝i !assoc_iso}, { esimp, fconstructor, esimp, split, { fapply natural_iso.mk', { intro c, reflexivity}, { intro c c' f, rewrite [▸*, id_right, Cpushout_functor_list_singleton, id_left]}}, { fapply natural_iso.mk', { intro c, reflexivity}, { intro c c' f, rewrite [▸*, id_right, Cpushout_functor_list_singleton, id_left]}}, intro c, rewrite [▸*, id_left, id_right, Cpushout_functor_list_singleton]}, { esimp, fconstructor, { split: reflexivity}, intro c, reflexivity} end end} end /- Pushout of groupoids with a type of basepoints -/ section variables {S : Type} {C D E : Groupoid} (k : S → C) (F : C ⇒ D) (G : C ⇒ E) variables ⦃x x' x₁ x₂ x₃ x₄ : Precategory_bpushout k F G⦄ open bpushout_prehom_index paths.paths_rel bpushout_hom_rel_index definition bpushout_index_inv [unfold 8] (i : bpushout_prehom_index k F G x x') : bpushout_prehom_index k F G x' x := begin induction i, { exact iD k F G f⁻¹}, { exact iE k F G g⁻¹}, { exact ED k F G s}, { exact DE k F G s}, end theorem bpushout_index_reverse {l l' : bpushout_prehom k F G x x'} (q : bpushout_hom_rel_index k F G l l') : paths_rel (bpushout_hom_rel_index k F G) (reverse (bpushout_index_inv k F G) l) (reverse (bpushout_index_inv k F G) l') := begin induction q: apply paths_rel_of_Q; try rewrite reverse_singleton; rewrite *reverse_pair; try rewrite reverse_nil; esimp; try rewrite [comp_inverse]; try rewrite [id_inverse]; rewrite [-*respect_inv]; constructor end theorem bpushout_index_li (i : bpushout_prehom_index k F G x x') : paths_rel (bpushout_hom_rel_index k F G) [bpushout_index_inv k F G i, i] nil := begin induction i: esimp, { refine rtrans (paths_rel_of_Q !DD) _, rewrite [comp.left_inverse], exact paths_rel_of_Q !idD}, { refine rtrans (paths_rel_of_Q !EE) _, rewrite [comp.left_inverse], exact paths_rel_of_Q !idE}, { exact paths_rel_of_Q !DED}, { exact paths_rel_of_Q !EDE} end theorem bpushout_index_ri (i : bpushout_prehom_index k F G x x') : paths_rel (bpushout_hom_rel_index k F G) [i, bpushout_index_inv k F G i] nil := begin induction i: esimp, { refine rtrans (paths_rel_of_Q !DD) _, rewrite [comp.right_inverse], exact paths_rel_of_Q !idD}, { refine rtrans (paths_rel_of_Q !EE) _, rewrite [comp.right_inverse], exact paths_rel_of_Q !idE}, { exact paths_rel_of_Q !EDE}, { exact paths_rel_of_Q !DED} end definition Groupoid_bpushout [constructor] : Groupoid := Groupoid_paths (bpushout_hom_rel_index k F G) (bpushout_index_inv k F G) (bpushout_index_reverse k F G) (bpushout_index_li k F G) (bpushout_index_ri k F G) definition Gpushout [constructor] : Groupoid := Groupoid_bpushout (λc, c) F G end end category