/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad The notion of "finiteness" for sets. This approach is not computational: for example, just because an element s : set A satsifies finite s doesn't mean that we can compute the cardinality. For a computational representation, use the finset type. -/ import data.set.function data.finset logic.choice open nat variable {A : Type} namespace set definition finite [class] (s : set A) : Prop := ∃ (s' : finset A), s = finset.to_set s' theorem finite_finset [instance] (s : finset A) : finite (finset.to_set s) := exists.intro s rfl /- to finset: casts every set to a finite set -/ noncomputable definition to_finset (s : set A) : finset A := if fins : finite s then some fins else finset.empty theorem to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : to_finset s = (#finset ∅) := by rewrite [↑to_finset, dif_neg nfins] theorem to_set_to_finset (s : set A) [fins : finite s] : finset.to_set (to_finset s) = s := by rewrite [↑to_finset, dif_pos fins]; exact eq.symm (some_spec fins) theorem mem_to_finset_eq (a : A) (s : set A) [fins : finite s] : (#finset a ∈ to_finset s) = (a ∈ s) := by rewrite [-to_set_to_finset at {2}] theorem to_set_to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : finset.to_set (to_finset s) = ∅ := by rewrite [to_finset_of_not_finite nfins] theorem to_finset_to_set (s : finset A) : to_finset (finset.to_set s) = s := by rewrite [finset.eq_eq_to_set_eq, to_set_to_finset (finset.to_set s)] theorem to_finset_eq_of_to_set_eq {s : set A} {t : finset A} (H : finset.to_set t = s) : to_finset s = t := finset.eq_of_to_set_eq_to_set (by subst [s]; rewrite to_finset_to_set) /- finiteness -/ theorem finite_of_to_set_to_finset_eq {s : set A} (H : finset.to_set (to_finset s) = s) : finite s := by rewrite -H; apply finite_finset theorem finite_empty [instance] : finite (∅ : set A) := by rewrite [-finset.to_set_empty]; apply finite_finset theorem to_finset_empty : to_finset (∅ : set A) = (#finset ∅) := to_finset_eq_of_to_set_eq !finset.to_set_empty theorem finite_insert [instance] (a : A) (s : set A) [fins : finite s] : finite (insert a s) := exists.intro (finset.insert a (to_finset s)) (by rewrite [finset.to_set_insert, to_set_to_finset]) theorem to_finset_insert (a : A) (s : set A) [fins : finite s] : to_finset (insert a s) = finset.insert a (to_finset s) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_insert, to_set_to_finset] example : finite '{1, 2, 3} := _ theorem finite_union [instance] (s t : set A) [fins : finite s] [fint : finite t] : finite (s ∪ t) := exists.intro (#finset to_finset s ∪ to_finset t) (by rewrite [finset.to_set_union, *to_set_to_finset]) theorem to_finset_union (s t : set A) [fins : finite s] [fint : finite t] : to_finset (s ∪ t) = (#finset to_finset s ∪ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_union, *to_set_to_finset] theorem finite_inter [instance] (s t : set A) [fins : finite s] [fint : finite t] : finite (s ∩ t) := exists.intro (#finset to_finset s ∩ to_finset t) (by rewrite [finset.to_set_inter, *to_set_to_finset]) theorem to_finset_inter (s t : set A) [fins : finite s] [fint : finite t] : to_finset (s ∩ t) = (#finset to_finset s ∩ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_inter, *to_set_to_finset] theorem finite_filter [instance] (s : set A) (p : A → Prop) [h : decidable_pred p] [fins : finite s] : finite {x ∈ s | p x} := exists.intro (finset.filter p (to_finset s)) (by rewrite [finset.to_set_filter, *to_set_to_finset]) theorem to_finset_filter (s : set A) (p : A → Prop) [h : decidable_pred p] [fins : finite s] : to_finset {x ∈ s | p x} = (#finset {x ∈ to_finset s | p x}) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_filter, to_set_to_finset] theorem finite_image [instance] {B : Type} [h : decidable_eq B] (f : A → B) (s : set A) [fins : finite s] : finite (f '[s]) := exists.intro (finset.image f (to_finset s)) (by rewrite [finset.to_set_image, *to_set_to_finset]) theorem to_finset_image {B : Type} [h : decidable_eq B] (f : A → B) (s : set A) [fins : finite s] : to_finset (f '[s]) = (#finset f '[to_finset s]) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_image, to_set_to_finset] theorem finite_diff [instance] (s t : set A) [fins : finite s] : finite (s \ t) := !finite_filter theorem to_finset_diff (s t : set A) [fins : finite s] [fint : finite t] : to_finset (s \ t) = (#finset to_finset s \ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_diff, *to_set_to_finset] theorem finite_subset {s t : set A} [fint : finite t] (ssubt : s ⊆ t) : finite s := by rewrite (eq_filter_of_subset ssubt); apply finite_filter theorem to_finset_subset_to_finset_eq (s t : set A) [fins : finite s] [fint : finite t] : (#finset to_finset s ⊆ to_finset t) = (s ⊆ t) := by rewrite [finset.subset_eq_to_set_subset, *to_set_to_finset] theorem finite_of_finite_insert {s : set A} {a : A} (finias : finite (insert a s)) : finite s := finite_subset (subset_insert a s) -- question: how can I avoid the parenthesis in the notation below? -- this didn't work: notation `𝒫`:max s := powerset s, nor variants theorem finite_powerset (s : set A) [fins : finite s] : finite (𝒫 s) := assert H : (𝒫 s) = finset.to_set '[finset.to_set (#finset 𝒫 (to_finset s))], from setext (take t, iff.intro (suppose t ∈ 𝒫 s, assert t ⊆ s, from this, assert finite t, from finite_subset this, have (#finset to_finset t ∈ 𝒫 (to_finset s)), by rewrite [finset.mem_powerset_iff_subset, to_finset_subset_to_finset_eq]; apply `t ⊆ s`, mem_image this (by rewrite to_set_to_finset)) (assume H', obtain t' [(tmem : (#finset t' ∈ 𝒫 (to_finset s))) (teq : finset.to_set t' = t)], from H', show t ⊆ s, begin rewrite [-teq, finset.mem_powerset_iff_subset at tmem, -to_set_to_finset s], rewrite -finset.subset_eq_to_set_subset, assumption end)), by rewrite H; apply finite_image /- induction for finite sets -/ theorem induction_finite [recursor 6] {P : set A → Prop} (H1 : P ∅) (H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [fins : finite s], a ∉ s → P s → P (insert a s)) : ∀ (s : set A), finite s → P s := begin intro s fins, rewrite [-to_set_to_finset s], generalize to_finset s, intro s', induction s' using finset.induction with a s' nains ih, {rewrite finset.to_set_empty, apply H1}, rewrite [finset.to_set_insert], apply H2, {rewrite -finset.mem_eq_mem_to_set, assumption}, exact ih end theorem induction_on_finite {P : set A → Prop} (s : set A) (fins : finite s) (H1 : P ∅) (H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [fins : finite s], a ∉ s → P s → P (insert a s)) : P s := induction_finite H1 H2 s fins /- cardinality -/ noncomputable definition card (s : set A) := finset.card (set.to_finset s) theorem card_to_set (s : finset A) : card (finset.to_set s) = finset.card s := by rewrite [↑card, to_finset_to_set] theorem card_of_not_finite {s : set A} (nfins : ¬ finite s) : card s = 0 := by rewrite [↑card, to_finset_of_not_finite nfins] theorem card_empty : card (∅ : set A) = 0 := by rewrite [-finset.to_set_empty, card_to_set] theorem card_insert_of_mem {a : A} {s : set A} (H : a ∈ s) : card (insert a s) = card s := if fins : finite s then (by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_mem H]) else (assert ¬ finite (insert a s), from suppose _, absurd (!finite_of_finite_insert this) fins, by rewrite [card_of_not_finite fins, card_of_not_finite this]) theorem card_insert_of_not_mem {a : A} {s : set A} [fins : finite s] (H : a ∉ s) : card (insert a s) = card s + 1 := by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_not_mem H] theorem card_insert_le (a : A) (s : set A) [fins : finite s] : card (insert a s) ≤ card s + 1 := if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ else by rewrite [card_insert_of_not_mem H] theorem card_singleton (a : A) : card '{a} = 1 := by rewrite [card_insert_of_not_mem !not_mem_empty, card_empty] /- -- TODO: get induction working somehow. set_option formatter.hide_full_terms false theorem eq_empty_of_card_eq_zero {s : set A} [fins : finite s] (H : card s = 0) : s = ∅ := begin induction s with a s' fins' anins IH, {rewrite card_empty at H}, rewrite (card_insert_of_not_mem anins) at H, apply nat.no_confusion H, end -/ theorem card_add_card (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) := begin rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂], rewrite [-finset.to_set_union, -finset.to_set_inter, *card_to_set], apply finset.card_add_card end end set