/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include #include #include #include "environment.h" #include "type_check.h" #include "exception.h" #include "debug.h" namespace lean { constexpr unsigned uninit = std::numeric_limits::max(); environment::definition::definition(name const & n, expr const & t, expr const & v, bool opaque): m_name(n), m_type(t), m_value(v), m_opaque(opaque) { } environment::definition::~definition() { } environment::object_kind environment::definition::kind() const { return object_kind::Definition; } void environment::definition::display(std::ostream & out) const { out << "Definition " << m_name << " : " << m_type << " := " << m_value << "\n"; } environment::fact::fact(name const & n, expr const & t): m_name(n), m_type(t) { } environment::fact::~fact() { } environment::object_kind environment::fact::kind() const { return object_kind::Fact; } void environment::fact::display(std::ostream & out) const { out << "Fact " << m_name << " : " << m_type << "\n"; } /** \brief Implementation of the Lean environment. */ struct environment::imp { typedef std::unordered_map object_dictionary; std::vector> m_uvar_distances; std::vector m_uvars; std::atomic m_num_children; std::shared_ptr m_parent; std::vector m_objects; object_dictionary m_object_dictionary; bool has_children() const { return m_num_children > 0; } void inc_children() { m_num_children++; } void dec_children() { m_num_children--; } bool has_parent() const { return m_parent != nullptr; } /** \brief Return v - k. It throws an exception if there is a underflow. */ static int sub(int v, unsigned k) { long long r = static_cast(v) - static_cast(k); if (r < std::numeric_limits::min()) throw exception("universe overflow"); return static_cast(r); } /** \brief Return v + k. It throws an exception if there is an overflow. */ static int add(int v, unsigned k) { long long r = static_cast(v) + static_cast(k); if (r > std::numeric_limits::max() - 1) throw exception("universe overflow"); return static_cast(r); } /** \brief Return v + k. It throws an exception if there is an overflow. */ static unsigned add(unsigned v, unsigned k) { unsigned long long r = static_cast(v) + static_cast(k); if (r > std::numeric_limits::max() - 1) throw exception("universe overflow"); return static_cast(r); } /** \brief Return true iff l1 >= l2 + k */ bool is_ge(level const & l1, level const & l2, int k) { switch (kind(l2)) { case level_kind::UVar: switch (kind(l1)) { case level_kind::UVar: { unsigned d = m_uvar_distances[uvar_idx(l1)][uvar_idx(l2)]; return d != uninit && (k < 0 || (k >= 0 && d >= static_cast(k))); } case level_kind::Lift: return is_ge(lift_of(l1), l2, sub(k, lift_offset(l1))); case level_kind::Max: return std::any_of(max_begin_levels(l1), max_end_levels(l1), [&](level const & l) { return is_ge(l, l2, k); }); } case level_kind::Lift: return is_ge(l1, lift_of(l2), add(k, lift_offset(l2))); case level_kind::Max: return std::all_of(max_begin_levels(l2), max_end_levels(l2), [&](level const & l) { return is_ge(l1, l, k); }); } lean_unreachable(); return false; } bool is_ge(level const & l1, level const & l2) { if (has_parent()) return m_parent->is_ge(l1, l2); else return is_ge(l1, l2, 0); } level add_var(name const & n) { if (std::any_of(m_uvars.begin(), m_uvars.end(), [&](level const & l){ return uvar_name(l) == n; })) throw exception("invalid universe variable declaration, it has already been declared"); unsigned idx = m_uvars.size(); level r(n, idx); m_uvars.push_back(r); std::for_each(m_uvar_distances.begin(), m_uvar_distances.end(), [](std::vector & v) { v.push_back(uninit); }); m_uvar_distances.push_back(std::vector()); std::vector & d = m_uvar_distances.back(); d.resize(m_uvars.size(), static_cast(uninit)); d[idx] = 0; return r; } void add_constraint(uvar v1, uvar v2, unsigned d) { lean_assert(v1 != v2); unsigned num = m_uvar_distances.size(); lean_assert(v1 < num); lean_assert(v2 < num); std::vector & v1_dists = m_uvar_distances[v1]; if (v1_dists[v2] == uninit || d >= v1_dists[v2]) { v1_dists[v2] = d; // update forward std::vector & v2_dists = m_uvar_distances[v2]; for (uvar v3 = 0; v3 < num; v3++) { if (v2_dists[v3] != uninit) { lean_assert(v1 != v3); unsigned d_v1_v3 = add(d, v2_dists[v3]); if (v1_dists[v3] == uninit || d_v1_v3 >= v1_dists[v3]) v1_dists[v3] = d_v1_v3; } } } } void add_constraints(uvar v1, level const & l, unsigned k) { switch (kind(l)) { case level_kind::UVar: add_constraint(v1, uvar_idx(l), k); return; case level_kind::Lift: add_constraints(v1, lift_of(l), add(k, lift_offset(l))); return; case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { add_constraints(v1, l1, k); }); return; } lean_unreachable(); } level define_uvar(name const & n, level const & l) { if (has_parent()) throw exception("invalid universe declaration, universe variables can only be declared in top-level environments"); if (has_children()) throw exception("invalid universe declaration, environment has children environments"); level r = add_var(n); add_constraints(uvar_idx(r), l, 0); return r; } level get_uvar(name const & n) const { if (has_parent()) { return m_parent->get_uvar(n); } else { auto it = std::find_if(m_uvars.begin(), m_uvars.end(), [&](level const & l) { return uvar_name(l) == n; }); if (it == m_uvars.end()) { std::ostringstream s; s << "unknown universe variable '" << n << "'"; throw exception (s.str()); } else { return *it; } } } void init_uvars() { m_uvars.push_back(level()); m_uvar_distances.push_back(std::vector()); m_uvar_distances.back().push_back(0); lean_assert(uvar_idx(m_uvars.back()) == 0); } void display_uvars(std::ostream & out) const { std::for_each(m_uvars.begin(), m_uvars.end(), [&](level const & u) { std::vector const & u_dists = m_uvar_distances[uvar_idx(u)]; unsigned num = u_dists.size(); for (uvar v2 = 0; v2 < num; v2++) { if (v2 != uvar_idx(u) && u_dists[v2] != uninit) { out << uvar_name(u) << " >= " << uvar_name(m_uvars[v2]); if (u_dists[v2] > 0) out << " + " << u_dists[v2]; out << "\n"; } } }); } void check_no_children() { if (has_children()) throw exception("invalid object declaration, environment has children environments"); } void check_name(name const & n) { if (m_object_dictionary.find(n) != m_object_dictionary.end()) { std::ostringstream s; s << "environment already contains an object with name '" << n << "'"; throw exception (s.str()); } } void add_definition(name const & n, expr const & t, expr const & v, bool opaque) { m_objects.push_back(new definition(n, t, v, opaque)); m_object_dictionary.insert(std::make_pair(n, m_objects.back())); } void add_fact(name const & n, expr const & t) { m_objects.push_back(new fact(n, t)); m_object_dictionary.insert(std::make_pair(n, m_objects.back())); } object const * get_object_ptr(name const & n) const { auto it = m_object_dictionary.find(n); if (it == m_object_dictionary.end()) { if (has_parent()) return m_parent->get_object_ptr(n); else return nullptr; } else { return it->second; } } object const & get_object(name const & n) const { object const * ptr = get_object_ptr(n); if (ptr) { return *ptr; } else { std::ostringstream s; s << "unknown object '" << n << "'"; throw exception (s.str()); } } imp(): m_num_children(0) { init_uvars(); } explicit imp(std::shared_ptr const & parent): m_num_children(0), m_parent(parent) { m_parent->inc_children(); } ~imp() { if (m_parent) m_parent->dec_children(); std::for_each(m_objects.begin(), m_objects.end(), [](object * obj) { delete obj; }); } }; environment::environment(): m_imp(new imp()) { } environment::environment(imp * new_ptr): m_imp(new_ptr) { } environment::environment(std::shared_ptr const & ptr): m_imp(ptr) { } environment::~environment() { } level environment::define_uvar(name const & n, level const & l) { return m_imp->define_uvar(n, l); } bool environment::is_ge(level const & l1, level const & l2) const { return m_imp->is_ge(l1, l2); } void environment::display_uvars(std::ostream & out) const { m_imp->display_uvars(out); } environment environment::mk_child() const { return environment(new imp(m_imp)); } bool environment::has_children() const { return m_imp->has_children(); } bool environment::has_parent() const { return m_imp->has_parent(); } environment environment::parent() const { lean_assert(has_parent()); return environment(m_imp->m_parent); } level environment::get_uvar(name const & n) const { return m_imp->get_uvar(n); } void environment::add_definition(name const & n, expr const & t, expr const & v, bool opaque) { m_imp->check_no_children(); m_imp->check_name(n); infer_universe(t, *this); expr v_t = infer_type(v, *this); if (!is_convertible(t, v_t, *this)) { std::ostringstream buffer; buffer << "type mismatch when defining '" << n << "'\n" << "expected type:\n" << t << "\n" << "given type:\n" << v_t; throw exception(buffer.str()); } m_imp->add_definition(n, t, v, opaque); } void environment::add_definition(name const & n, expr const & v, bool opaque) { m_imp->check_no_children(); m_imp->check_name(n); expr v_t = infer_type(v, *this); m_imp->add_definition(n, v_t, v, opaque); } void environment::add_fact(name const & n, expr const & t) { m_imp->check_no_children(); m_imp->check_name(n); infer_universe(t, *this); m_imp->add_fact(n, t); } environment::object const & environment::get_object(name const & n) const { return m_imp->get_object(n); } environment::object const * environment::get_object_ptr(name const & n) const { return m_imp->get_object_ptr(n); } }