/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about fibers -/ import .sigma .eq structure fiber {A B : Type} (f : A → B) (b : B) := (point : A) (point_eq : f point = b) open equiv sigma sigma.ops eq namespace fiber variables {A B : Type} {f : A → B} {b : B} definition sigma_char (f : A → B) (b : B) : fiber f b ≃ (Σ(a : A), f a = b) := begin fapply equiv.MK, {intro x, exact ⟨point x, point_eq x⟩}, {intro x, exact (fiber.mk x.1 x.2)}, {intro x, cases x, apply idp}, {intro x, cases x, apply idp}, end definition fiber_eq_equiv (x y : fiber f b) : (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) := begin apply equiv.trans, {apply eq_equiv_fn_eq_of_equiv, apply sigma_char}, apply equiv.trans, {apply equiv.symm, apply equiv_sigma_eq}, apply sigma_equiv_sigma_id, intro p, apply equiv_of_equiv_of_eq, rotate 1, apply inv_con_eq_equiv_eq_con, {apply (ap (λx, x = _)), rewrite transport_eq_Fl} end definition fiber_eq {x y : fiber f b} (p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) : x = y := to_inv !fiber_eq_equiv ⟨p, q⟩ end fiber