/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Universal and existential quantifiers. See also init.logic. -/ import .connectives open inhabited nonempty theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x := assume H1 : ∀x, ¬p x, obtain (w : A) (Hw : p w), from H, absurd Hw (H1 w) theorem not_exists_not_of_forall {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x, ¬p x := assume H1 : ∃x, ¬p x, obtain (w : A) (Hw : ¬p w), from H1, absurd (H2 w) Hw theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) := iff.intro (assume Hl, take x, iff.elim_left (H x) (Hl x)) (assume Hr, take x, iff.elim_right (H x) (Hr x)) theorem exists_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∃x, φ x) ↔ (∃x, ψ x) := iff.intro (assume Hex, obtain w Pw, from Hex, exists.intro w (iff.elim_left (H w) Pw)) (assume Hex, obtain w Qw, from Hex, exists.intro w (iff.elim_right (H w) Qw)) theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true := iff.intro (assume H, trivial) (assume H, take x, trivial) theorem forall_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∀x : A, p) ↔ p := iff.intro (assume Hl, inhabited.destruct H (take x, Hl x)) (assume Hr, take x, Hr) theorem exists_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∃x : A, p) ↔ p := iff.intro (assume Hl, obtain a Hp, from Hl, Hp) (assume Hr, inhabited.destruct H (take a, exists.intro a Hr)) theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : (∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) := iff.intro (assume H, and.intro (take x, and.elim_left (H x)) (take x, and.elim_right (H x))) (assume H, take x, and.intro (and.elim_left H x) (and.elim_right H x)) theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) : (∃x, φ x ∨ ψ x) ↔ (∃x, φ x) ∨ (∃x, ψ x) := iff.intro (assume H, obtain (w : A) (Hw : φ w ∨ ψ w), from H, or.elim Hw (assume Hw1 : φ w, or.inl (exists.intro w Hw1)) (assume Hw2 : ψ w, or.inr (exists.intro w Hw2))) (assume H, or.elim H (assume H1, obtain (w : A) (Hw : φ w), from H1, exists.intro w (or.inl Hw)) (assume H2, obtain (w : A) (Hw : ψ w), from H2, exists.intro w (or.inr Hw))) theorem nonempty_of_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A := obtain w Hw, from H, nonempty.intro w section open decidable eq.ops variables {A : Type} (P : A → Prop) (a : A) [H : decidable (P a)] include H definition decidable_forall_eq [instance] : decidable (∀ x, x = a → P x) := decidable.rec_on H (λ pa, inl (λ x heq, eq.rec_on (eq.rec_on heq rfl) pa)) (λ npa, inr (λ h, absurd (h a rfl) npa)) definition decidable_exists_eq [instance] : decidable (∃ x, x = a ∧ P x) := decidable.rec_on H (λ pa, inl (exists.intro a (and.intro rfl pa))) (λ npa, inr (λ h, obtain (w : A) (Hw : w = a ∧ P w), from h, absurd (and.rec_on Hw (λ h₁ h₂, h₁ ▸ h₂)) npa)) end /- exists_unique -/ definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, p y → y = x notation `∃!` binders `,` r:(scoped P, exists_unique P) := r theorem exists_unique.intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x := exists.intro w (and.intro H1 H2) theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b := obtain w Hw, from H2, H1 w (and.elim_left Hw) (and.elim_right Hw) /- congruences -/ section variables {A : Type} {p₁ p₂ : A → Prop} (H : ∀x, p₁ x ↔ p₂ x) theorem congr_forall : (∀x, p₁ x) ↔ (∀x, p₂ x) := iff.intro (assume H', take x, iff.mp (H x) (H' x)) (assume H', take x, iff.mp' (H x) (H' x)) theorem congr_exists : (∃x, p₁ x) ↔ (∃x, p₂ x) := iff.intro (assume H', exists.elim H' (λ x H₁, exists.intro x (iff.mp (H x) H₁))) (assume H', exists.elim H' (λ x H₁, exists.intro x (iff.mp' (H x) H₁))) include H theorem congr_exists_unique : (∃!x, p₁ x) ↔ (∃!x, p₂ x) := begin apply congr_exists, intro x, apply congr_and (H x), apply congr_forall, intro y, apply congr_imp (H y) !iff.rfl end end